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ABSTRACT
Despite vigorous debates about the technical characteristics of risk
assessments being deployed in the U.S. criminal justice system,
remarkably little research has studied how these tools a�ect actual
decision-making processes. After all, risk assessments do not make
de�nitive decisions—they inform judges, who are the �nal arbiters.
It is therefore essential that considerations of risk assessments be
informed by rigorous studies of how judges actually interpret and
use them. This paper takes a �rst step toward such research on
human interactions with risk assessments through a controlled
experimental study on Amazon Mechanical Turk. We found several
behaviors that call into question the supposed e�cacy and fair-
ness of risk assessments: our study participants 1) underperformed
the risk assessment even when presented with its predictions, 2)
could not e�ectively evaluate the accuracy of their own or the risk
assessment’s predictions, and 3) exhibited behaviors fraught with
“disparate interactions,” whereby the use of risk assessments led
to higher risk predictions about black defendants and lower risk
predictions about white defendants. These results suggest the need
for a new “algorithm-in-the-loop” framework that places machine
learning decision-making aids into the sociotechnical context of
improving human decisions rather than the technical context of
generating the best prediction in the abstract. If risk assessments
are to be used at all, they must be grounded in rigorous evaluations
of their real-world impacts instead of in their theoretical potential.

CCS CONCEPTS
• Human-centered computing → Human computer interac-
tion (HCI); • Applied computing→ Law.
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1 INTRODUCTION
Across the United States, courts are increasingly using risk as-
sessments to estimate the likelihood that criminal defendants will
engage in unlawful behavior in the future.1 These tools are being
deployed during several stages of criminal justice adjudication, in-
cluding at bail hearings (to predict the risk that the defendant, if
released, will be rearrested before trial or not appear for trial) and
at sentencing (to predict the risk that the defendant will recidivate).
Because risk assessments rely on data and a standardized process,
many proponents believe that they can mitigate judicial biases and
make “objective” decisions about defendants [9, 12, 34]. Risk assess-
ments have therefore gained widespread support as a tool to reduce
incarceration rates and spur criminal justice reform [9, 27, 34].

Yet many are concerned that risk assessments make biased de-
cisions due to the historical discrimination embedded in training
data. For example, the widely-used COMPAS risk assessment tool
wrongly labels black defendants as future criminals at twice the
rate it does for white defendants [3]. Prompted by these concerns,
machine learning researchers have developed a rapidly-growing
body of technical work focused on topics such as characterizing the
incompatibility of di�erent fairness metrics [6, 44] and developing
new algorithms to reduce bias [24, 33].

Despite these e�orts, current research into fair machine learning
fails to capture an essential aspect of how risk assessments impact
the criminal justice system: their in�uence on judges. After all,
risk assessments do not make de�nitive decisions about pretrial
release and sentencing—they merely aid judges, who must decide
whom to release before trial and how to sentence defendants after
trial. In other words, algorithmic outputs act as decision-making
aids rather than �nal arbiters. Thus, whether a risk assessment
itself is accurate and fair is of only indirect concern—the primary
considerations are how it a�ects decision-making processes and
whether it makes judgesmore accurate and fair. No matter how well
we characterize the technical speci�cations of risk assessments, we
will not fully understand their impacts unless we also study how
judges interpret and use them.

This study sheds new light on how risk assessments in�uence
human decisions in the context of criminal justice adjudication.
We ran experiments using Amazon Mechanical Turk to study how
people make predictions about risk, both with and without the
aid of a risk assessment. We focus on pretrial release, which in
many respects resembles a typical prediction problem.2 By studying

1 Although there have been several generations of criminal justice risk assessments
over the past century [41], throughout this paper we use risk assessments to refer to
machine learning algorithms that provide statistical predictions.
2After someone is arrested, courts must decide whether to release that person until
their trial. This is typically done by setting an amount of “bail,” or money that the
defendant must pay as collateral for release. The broad goal of this process is to protect
individual liberty while also ensuring that the defendant appears in court for trial
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behavior in this controlled environment, we discerned important
patterns in how risk assessments in�uence human judgments of
risk. Although these experiments involved laypeople rather than
judges—limiting the extent to which our results can be assumed
to directly implicate real-world risk assessments—they highlight
several types of interactions that should be studied further before
risk assessments can be responsibly deployed in the courtroom.

Our results suggest several ways in which the interactions be-
tween people and risk assessments can generate errors and biases
in the administration of criminal justice, thus calling into question
the supposed e�cacy and fairness of risk assessments. First, even
when presented with the risk assessment’s predictions, participants
made decisions that were less accurate than the advice provided.
Second, people could not e�ectively evaluate the accuracy of their
own or the risk assessment’s predictions: participants’ con�dence
in their performance was negatively associated with their actual
performance and their judgments of the risk assessment’s accuracy
and fairness had no association with the risk assessment’s actual
accuracy and fairness. Finally, participant interactions with the risk
assessment introduced two new forms of bias (which we collec-
tively term “disparate interactions”) into decision-making: when
evaluating black defendants, participants were 25.9% more strongly
in�uenced to increase their risk prediction at the suggestion of the
risk assessment and were 36.4% more likely to deviate from the
risk assessment toward higher levels of risk. Further research is
necessary to ascertain whether judges exhibit similar behaviors.

The chain from algorithm to person to decision has become
vitally important as algorithms inform increasing numbers of high-
stakes decisions. To improve our understanding of these contexts,
we introduce an “algorithm-in-the-loop” framework that places
algorithms in a sociotechnical context—thus focusing attention on
human-algorithm interactions to improve human decisions rather
than focusing on the algorithm to improve its decisions. Rigorous
studies of algorithm-in-the-loop systems are necessary to inform
the design and implementation of algorithmic decision-making aids
being deployed in the criminal justice system and beyond.

2 RELATEDWORK
Despite some indications that risk assessments impact judges’ deci-
sions [29, 43, 58], little is known about the speci�c ways in which
they in�uence judges. The most extensive study of this topic evalu-
ated the changes prompted by Kentucky mandating in 2011 that
risk assessments be used to inform all pretrial release decisions
[59]. Although the risk assessment recommended immediate non-
�nancial release for 90% of defendants, in practice the non-�nancial
release rate increased only marginally (to 35%) before declining
back toward the original release rate. The analysis found that the
risk assessments had no e�ect on racial disparities. Two sets of
related work provide further hints regarding how judges might use
or otherwise respond to the predictions made by risk assessments.

and does not commit any crimes while released (whether the defendant is guilty
of the o�ense that led to the arrest is not a factor at this stage). In order to make
pretrial release decisions, judges must determine the likelihood—or the “risk”—that
the defendant, if released, will fail to appear in court or will be arrested.

2.1 People are bad at incorporating
quantitative predictions

The phenomenon of “automation bias” suggests that automated
tools in�uence human decisions in signi�cant, and often detrimen-
tal, ways. Two types of errors are particularly common: omission
errors, in which people do not recognize when automated systems
err, and commission errors, in which people follow automated sys-
tems without considering contradictory information [51]. Heavy
reliance on automated systems can alter people’s relationship to a
task by creating a “moral bu�er” between their decisions and the
impacts of those decisions [11]. Thus, although “[a]utomated deci-
sion support tools are designed to improve decision e�ectiveness
and reduce human error, [. . . ] they can cause operators to relinquish
a sense of responsibility and subsequently accountability because
of a perception that the automation is in charge” [11].

Even when algorithms are more accurate, people do not appro-
priately incorporate algorithmic recommendations to improve their
decisions, instead preferring to rely on their own or other people’s
judgment [47, 66]. One study found that people could not distin-
guish between reliable and unreliable predictions [30], and another
found that people often deviate incorrectly from algorithmic fore-
casts [18]. Compounding this bias is the phenomenon of “algorithm
aversion,” through which people are less tolerant of errors made by
algorithms than errors made by other people [17].

2.2 Information �lters through existing biases
Previous research suggests that information presumed to help peo-
ple make fairer decisions can fail to do so because it �lters through
people’s preexisting biases. For example, “ban-the-box” policies
(which are intended to promote racial equity in hiring by prevent-
ing employers from asking job applicants whether they have a
criminal record) actually increase racial discrimination by allow-
ing employers to rely on stereotypes and thereby overestimate
how many black applicants have criminal records [2, 19]. Similarly,
people’s interpretations of police-worn body camera footage are
signi�cantly in�uenced by their prior attitudes about police [57].

Studies have shown that judges harbor implicit biases and that
racial disparities in incarceration rates are due in part to di�erential
judicial decisions across race [1, 54]. In Florida, for example, white
judges give harsher sentences to black defendants than white ones
who have committed the same crime and received the same score
from the formula the state uses to set criminal punishments [55].

3 STUDY DESIGN
We conducted this study in two stages: �rst, developing a risk
assessment for a population of criminal defendants, and second,
running experiments on Mechanical Turk to determine how people
incorporate these assessments into their own predictions.3

Before running our experiments, we made three hypotheses:

Hypothesis 1 (Performance). Participants presented with a
risk assessment will make predictions that are less accurate
than the risk assessment’s.

3This study was reviewed and approved by the Harvard University Area Institutional
Review Board and the National Archive of Criminal Justice Data.
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Hypothesis 2 (Evaluation). Participants will be unable to ac-
curately evaluate their own and the algorithm’s performance.

Hypothesis 3 (Bias). As they interact with the risk assess-
ment, participants will be disproportionately likely to in-
crease risk predictions about black defendants and to de-
crease risk predictions about white defendants.

3.1 Defendant population and risk assessment
Stage 1 of the study involved developing a risk assessment for
criminal defendants being considered for pretrial release (to predict
the likelihood that, if released, they would be arrested before trial
or fail to appear in court for trial). The goal of this stage was not to
develop an optimal pretrial risk assessment, but to develop a risk
assessment that resembles those used in practice and that could be
presented to participants during the experiments in Stage 2.

We used a dataset collected by the U.S. Department of Justice
that contains court processing information about 151,461 felony
defendants who were arrested between 1990 and 2009 in 40 of the 75
most populous counties in the U.S. [61]. We restricted our analysis
to defendants whose race was recorded as either black or white and
who were released before trial, thus providing us with ground truth
data about outcomes for each defendant. This yielded a dataset of
47,141 defendants (Table A.1). We pooled together failing to appear
and being rearrested, de�ning any incidence of one or both of these
outcomes as violating the terms of pretrial release; 29.8% of released
defendants committed a violation.

After splitting the data into train and test sets, we trained amodel
(i.e., the risk assessment) using gradient boosted trees [26]. The
model was based on �ve features about each defendant: age, o�ense
type, previous failures to appear, and number of prior arrests and
convictions. We excluded race and gender from the model to follow
common practice among risk assessment developers [46]. Because
our experiment participants would be predicting risk in increments
of 10% (see Section 3.2), we rounded each risk assessment prediction
to the nearest 10%.

The model achieves an area under the curve (AUC) of 0.67 on the
test set, indicating comparable accuracy to COMPAS [37, 45], the
Public Safety Assessment [13], and other risk assessments [14, 15].
We also evaluated the risk assessment model for fairness and found
that it is well-calibrated (Figure A.1). We focused on calibration not
as an ideal metric for fairness (recognizing that no perfect metric for
fairness can exist [32]), but because it is the most commonly-used
approach for evaluating risk assessments in practice [16, 25, 44].
Based on these attributes, our risk assessment resembles those used
within U.S. courts.

We selected from the test set an experimental sample of 500
defendants whose pro�les would be presented to both the control
and treatment groups during the experiments (Table A.1).

The full details of how we developed the risk assessment and
selected the sample population are available in the Appendix.

3.2 Experimental setup
In Stage 2 of the study, we conducted behavioral experiments on
Amazon Mechanical Turk to determine how people use and are
in�uenced by machine learning algorithms when making predic-
tions about pretrial release. Each trial consisted of a consent page,

Figure 1: An example of the prompt presented to partici-
pants in the treatment group. Participants in the control
group saw the same prompt, but without the sentence about
the risk score algorithm.

a tutorial (with a description of the task and background informa-
tion about pretrial release), an intro survey (Figure A.2), a series
of predictions (described below), and an exit survey (Figure A.3).
Both the intro and exit surveys included a simple question designed
to ensure participants were paying attention. We also included a
comprehension test with several multiple choice questions at the
end of the tutorial; participants were not allowed to participate in
the experiment until they correctly answered all of these questions.
We restricted the task to Mechanical Turk workers who had an
historical acceptance rate of � 75% and were inside the U.S. Each
worker was allowed to participate in the experiment only once.

The prediction task required participants to assess the likelihood
that criminal defendants who have been arrested will commit a
crime or fail to appear in court if they are released before trial (on
a scale from 0% to 100%, in intervals of 10%). Each participant was
presented with narrative pro�les about a random sample of 25 de-
fendants drawn from the 500-person experiment sample population.
These pro�les included the �ve features that the risk assessment
incorporated as well as the race and gender of each defendant (we
included these latter two features in the pro�les because judges are
exposed to these attributes in practice). While making predictions,
participants could reference the tutorial to look up background
information about pretrial release and the de�nitions of key terms.

When participants entered the experiment, they were randomly
sorted into a control or treatment group; participants in the control
groupwere shown the demographic information for each defendant,
while participants in the treatment group were shown the risk
assessment’s prediction in addition to demographic information
(Figure 1). We presented the same set of 500 defendants to both the
control and treatment groups, allowing us to directly measure the
impact on predictions of showing a risk assessment.

Participants were paid a base sum of $2 for completing the sur-
vey, with the opportunity to gain an additional reward of up to
$2 based on their performance during the experiment. We allo-
cated rewards according to a Brier score function, mapping the
Brier reward (bounded [0,1], see Section 4.1) for each prediction
to a payment using the formula pa�ment = reward ⇤ $0.08 (since
the test population is restricted to defendants who were released
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before trial, we have ground truth data with which to evaluate
each prediction). Because the Brier score is a proper score function
[28], participants were incentivized to report their true estimates
of crime risk. We explicitly articulated this to participants during
the tutorial and included a question about the reward structure in
the comprehension test to ensure that they understood.

4 RESULTS
We conducted trials on Mechanical Turk over the course of a week
in June 2018 (in 6 batches over 4 weekdays and 2 weekend days, at
times ranging from morning to evening to account for variations
in the population of Turk workers). 601 workers completed the
experiment; we excluded all data from participants who failed at
least one of the attention check questions or who required more
than three attempts to pass the comprehension test. This process
yielded a population of 554 participants (Table A.2). The participants
were 58.5% male and 80.5% white, and the majority (65.5%) have
completed at least a college degree. We asked participants to self-
report their familiarity with machine learning and the U.S. criminal
justice system on a scale from 1 (“Not at all”) to 5 (“Extremely”).

During the exit surveys, participants reported that the experi-
ment paid well, was clear, and was enjoyable. Participants earned
an average bonus of $1.54 (median=$1.56), making the average total
payment $3.54. Participants completed the task in an average of
20 minutes (median=12), and earned an average wage of $20 per
hour (median=$18). Out of 213 participants who responded to a free
text question in the exit survey asking for any further comments,
32% mentioned that the experiment length and payment were fair.
Participants were also asked in the exit survey to rate how clear and
enjoyable the experiment was, on a scale from 1 to 5. The average
rating for clarity was 4.4 (55% of participants rated the experiment
clarity a 5), and the average rating for enjoyment was 3.6 (56% rated
the experiment enjoyment a 4 or 5).

The participants cumulatively made 13,850 predictions about
defendants, providing us with 13.85 ± 3.9 predictions about each
defendant’s risk under each of the two experimental conditions.

4.1 Analysis
We evaluated the accuracy and calibration of each prediction using
the Brier reward: reward =

⇥
1 � (prediction � outcome)2

⇤
, where

prediction 2 {0, 0.1, . . . , 1} and outcome 2 {0, 1} (thus, reward 2
[0, 1]). When presented with a defendant who does not violate
pretrial release, for example, a prediction of 0% risk would yield a
reward of 1, a prediction of 100% would yield a reward of 0, and a
prediction of 50% would yield a reward of 0.75. We also measured
false positive rates (using a threshold of 50%).

Because we presented the same set of 500 defendants to both the
control and treatment groups, we could measure the in�uence of the
risk scores on the predictions about each defendant by comparing
the predictions made by the control and treatment groups. For each
defendant j, we de�ned the risk score’s in�uence

Ij =
tj � c j
r j � c j

(1)

where tj and c j are the average predictions made about that defen-
dant by participants in the treatment and control groups, respec-
tively, and r j is the prediction made by the risk assessment. An

I = 0 means that, on average, the treatment group makes identi-
cal predictions to the control group, completely discounting the
risk score, while an I = 1 means that the treatment group makes
identical predictions to the risk score.4 This measure of in�uence
is similar to the “weight of advice” metric that has been used to
measure how much people alter their decisions when presented
with advice [48, 65]. Comparing the distributions of predictions
made by the control and treatment groups indicates that the risk as-
sessment in�uences the full distribution of predictions made by the
treatment group, not just the average (Figure A.4). To obtain reliable
measurements, when evaluating algorithm in�uence we excluded
all predictions about the 112 defendants for whom |r j � c j | < 0.05.

We used a variant of Equation 1 to measure the in�uence of
the risk assessment on each participant in the treatment group.
For every prediction made by a participant, we measured the risk
assessment’s in�uence by taking that prediction in place of the
average treatment group prediction. We then averaged these in�u-
ences across the 25 predictions that the participant made. That is,
the in�uence of the risk assessment on participant k is

Ik =
1
25

25’
i=1

pki � ci

ri � ci
(2)

wherepki refers to participant k’s prediction about the ith defendant
(out of 25) presented.

Our primary dimension of analysis was to compare behavior and
performance across the race of defendants, which has been at the
crux of debates about fairness in criminal justice risk assessments [3,
6, 27]. Similar audits should be conducted across other intersecting
forms of identity, such as gender and class [10].

4.2 Hypothesis 1 (Performance)
Participants in the treatment group earned a 4.0% larger average
reward and a 16.4% lower false positive rate than participants in the
control group (Table 1). A two-sided t-test and �2 test con�rm that
these di�erences are statistically signi�cant (both with p < 10�5). A
regression of each participant’s performance on their treatment and
personal characteristics found that being in the treatment group
was associated with a 0.03 higher average reward (p < 10�7). The
only personal attribute that had a signi�cant relationship with
average reward was gender (women performed slightly better than
men, with p = 0.045).

Yet although presenting the risk assessment improved the perfor-
mance of participants, the treatment group signi�cantly underper-
formed the the risk assessment (Table 1). Despite being presented
with the risk assessment’s predictions, the treatment group achieved
a 2.6% lower average reward and a 46.5% higher false positive rate
than the risk assessment (both with p < 10�8). Only 23.7% of partic-
ipants in the treatment group earned a higher average reward than
the risk assessment over the course of their trial, compared to 64.1%
who earned a lower reward than the risk assessment (Figure A.5).

We broke these results down by race to compare how partici-
pants and the risk assessment performed when making predictions
about black and white defendants. As Figure 2 indicates, a similar

4 Although I will mostly fall between 0 and 1, it is possible for I to fall outside these
bounds if participants move in the opposite direction than the risk assessment suggests
or adjust beyond the risk assessment.
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Control Treatment Risk assessment
N=6,250 N=7,600 N=7,600

Average reward 0.756 0.786 0.807
False positive rate 17.7% 14.8% 10.1%
Table 1: The �rst two columns show the performance of par-
ticipants within the control and treatment groups and the
third column shows the performance of the risk assessment
(N is the total number of predictions made). Two-sided t-
tests and �2 tests con�rm that the average rewards and the
false positive rates, respectively, of all three prediction ap-
proaches are statistically distinct from one another (all with
p < 10�5).
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Figure 2: Performance of the control group, treatment group,
and risk assessment, broken down by defendant race. In
both cases, the treatment group outperforms the control
group but underperforms the risk assessment.

pattern was true for both races: the treatment group outperformed
the control group but underperformed the risk assessment. Tak-
ing the control group performance as a lower bound and the risk
assessment performance as an upper bound, the treatment group
achieved a similar relative improvement in its predictions about
both races: for average reward, 58.7% of possible improvement for
black defendants and 59.7% for white defendants; for false positive
rate, 39.3% of possible improvement for black defendants and 39.5%
for white defendants (neither di�erence across race is statistically
signi�cant).

The actual performance level di�ers signi�cantly across race,
however. All three prediction approaches (i.e., the control group,
the treatment group, and the risk assessment) achieve a larger
reward and lower false positive rate for white defendants than for
black defendants (all with p < 10�6). Most notably, the treatment
group attains a 4.5% higher average reward for white than black
defendants and its false positive rate for black defendants (18.3%) is
more than double its false positive rate for white defendants (9.0%).

4.3 Hypothesis 2 (Evaluation)
To assess whether participants could evaluate the quality of their
predictions, we compared their self-reported con�dence (from the
exit survey) to their actual performance, as measured by their av-
erage Brier reward during the task. The average participant con�-
dence was 3.2 (on a scale from 1 to 5), with the reward decreasing
as reported con�dence increases (Figure A.6). We regressed con�-
dence on performance (controlling for each participant’s treatment,
demographic information, and exit survey responses) and found
that average reward was negatively associated with con�dence
(p = 0.0186). In other words, the more con�dence participants ex-
pressed in their predictions, the less well they actually performed.
This pattern holds across both the control and treatment groups.

We next analyzed whether participants in the treatment group
could evaluate the risk assessment’s accuracy, as measured by its av-
erage Brier reward on the 25 defendants presented to the participant
(these average rewards ranged from 0.69 to 0.91). We regressed the
participants’ evaluations of the risk assessment’s accuracy against
the risk assessment’s actual performance, while controlling for each
participant’s performance, demographic information, and exit sur-
vey responses. The participant’s evaluation of the risk assessment’s
accuracy did not have any signi�cant relationship with the risk
assessment’s performance during the task, suggesting that partici-
pants were unable to perceive any di�erences in risk assessment
accuracy over the samples they observed (Figure A.6).

We also considered whether participants could discern how fairly
the risk assessment made predictions. As a rough measure of al-
gorithmic fairness during each trial, we measured the di�erence
between the risk assessment’s false positive rates for black and
white defendants on the 25 defendants presented to the participant
(in order to focus on the most salient aspect of bias, we restricted
this analysis to the 81% of participants for whom the risk assessment
had a greater or equal false positive rate for black than white defen-
dants). Regressing participant evaluations of the risk assessment’s
fairness on the risk assessment’s false positive rate di�erences
(controlling for each participant’s performance, demographic infor-
mation, and exit survey responses, along with the risk assessment’s
performance) found no signi�cant relationship between perceived
and actual fairness (Figure A.6).

Finally, we evaluated whether participants in the treatment
group could recognize how heavily they incorporated the risk
assessment into their decisions. Regressing the participants’ self-
reports of in�uence on the extent to which they were actually
in�uenced by the risk assessment (using the risk score in�uence
measure introduced in Equation 2, and controlling for each par-
ticipant’s performance, demographic information, and exit survey
responses, along with the risk assessment’s performance) indicates
that participants could generally discern how strongly they were
in�uenced by the risk assessment (p < 10�4; Figure A.6).

4.4 Hypothesis 3 (Bias)
We interrogated Hypothesis 3 through two complementary ap-
proaches: �rst, by taking the control group’s predictions as the
baseline participant predictions to measure the risk assessment’s
in�uence on the treatment group, and second, by taking the risk
assessment’s predictions as the starting point to measure howmuch
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and in which direction the treatment group participants deviated
from those predictions.

Although we could not precisely discern how participants made
decisions, the responses to an optional free response question in the
exit survey about how participants used the risk scores (Question 5
in Figure A.3) suggest that people predominantly followed a mix of
these two approaches. Out of the 156 participants who described
their strategy, 79 (50.6%) used the risk assessment as a baseline, 58
(37.2%) made their own judgment and then incorporated the risk
assessment, 10 (6.4%) followed the risk assessment completely, and
9 (5.8%) ignored the risk assessment entirely (Table A.3). The group
that followed the risk assessment earned the largest average reward
(0.81), while the group that ignored the risk assessment earned the
lowest (0.77). The other two groups both earned average rewards
of 0.79, and were statistically indistinguishable.

Analyzing behavior through the lens of the two most common
strategies yields complementary evidence for “disparate interac-
tions,” i.e., interactions with the risk assessment that lead partic-
ipants to disproportionately make higher risk predictions about
black defendants and lower risk predictions about white defendants.

4.4.1 Influence of risk scores. Because we presented the same pop-
ulation of defendants to the control and treatment groups, we could
directly measure how presenting the risk score to participants af-
fected the predictions made about each defendant. For each de-
fendant, we measured the in�uence of the risk assessment on the
treatment group’s predictions as described in Equation 1 (excluding
the 112 defendants for whom |r j � c j | < 0.05). The risk assessment
exhibited an average in�uence of 0.61; as this number is greater
than 0.5, it suggests that treatment group participants placed more
weight on the risk assessment than on their own judgment. A two-
sided t-test found no statistically signi�cant di�erence between the
risk assessment’s in�uence when its prediction was less or greater
than the control group’s prediction (r < c or r > c , respectively).

Splitting the defendants by race tells a more complex story (Fig-
ure 3). When the risk score was lower than the control group’s
average prediction (r < c), the risk assessment exerted a similar
in�uence on participants regardless of the defendant’s race (0.61
vs. 0.60; p=0.77). Yet when the risk assessment predicted a higher
risk than the control group (r > c), it exerted a 25.9% stronger
average in�uence on predictions about black defendants than on
predictions about white defendants (0.68 vs. 0.54; a two-sided t-test
�nds p = 0.02 and 95CI of the di�erence in means [0.02, 0.25]).

This outcome cannot be explained by di�erences in the raw
disparities between the risk assessment’s and the control group’s
predictions (i.e., the value of r � c), since the values of r � c do
not di�er signi�cantly across defendant race (the average disparity
for both races is 0.25 when r < c and 0.11 when r > c). Breaking
out Figure 3 based on the value of r � c indicates that the risk
assessment exerts an equal in�uence on predictions about both
races at all values of r � c , except for when r � c = 0.1 (Figure A.7).

Thus, the risk assessment leads to larger increases in risk for
black defendants (asmeasured by t�c).While the shift in participant
predictions precipitated by the risk assessment is identical when
r < c (the risk assessment generates an average reduction of 0.14 for
both black and white defendants), when r > c the average increase
for black defendants is 0.075 while the average increase for white
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Figure 3: The in�uence of the risk assessment (RA) on par-
ticipant predictions, broken down by whether the risk score
is less or greater than the control group’s average predic-
tion (r < c and r > c, respectively), and compared across the
race of defendants. While the risk assessment’s in�uence is
nearly identical across race when r < c, when r > c the risk
assessment exerts a 25.9% stronger in�uence on participants
who are evaluating black defendants (p = 0.02).

defendants is 0.063. Although these results are not signi�cant (a
two-sided t-test �nds p = 0.076 and 95CI di�erence in means [-
0.001, 0.02]), considering each prediction from the treatment group
independently, rather than taking averages for each defendant (i.e.,
replacing tj with pkj in Equation 1), yields further evidence for this
result: the average increase for black defendants is 0.077 compared
to 0.064 for white defendants (a 20.3% larger average increase), with
p = 0.003 and 95CI di�erence in means [0.004, 0.02]. Moreover,
among defendants for whom r � c = 0.1, the increase in participant
risk prediction instigated by the risk assessment is 25.5% larger for
black defendants (p = 0.042; Figure A.7).

We ran linear regressions to see what determines the risk as-
sessment’s in�uence on participants. We split defendants into two
categories—those for whom r < c (Group 1) and those for whom
r > c (Group 2). For each group, we regressed the algorithm’s in-
�uence on predictions about each defendant (Equation 1) on that
defendant’s demographic attributes and criminal background, along
with the value of |r � c |. For Group 1, the risk assessment exerted
more in�uence as |r �c | increased, but less in�uence for defendants
with a previous failure to appear on their records. For Group 2, the
risk assessment similarly was more in�uential as |r � c | increased.
Three other attributes were also statistically signi�cant: the risk
assessment exerted more in�uence on participants making predic-
tions about black defendants, defendants who were arrested for a
violent crime, and defendants with more prior convictions. Thus,
when r > c , participants were more strongly in�uenced to increase
their risk predictions for black defendants in two ways: they re-
sponded both directly to race and to a feature that is correlated
with race (prior convictions; Table A.1).
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Figure 4: The rate at which participants deviated from the
risk assessment’s prediction toward higher and lower lev-
els of risk, broken down by defendant race. When evaluat-
ing black defendants, participants were 36.4% more likely
to deviate positively from the risk assessment and 21.5%
less likely to deviate negatively (participant predictions
matched the risk assessment at an equal rate for both races).

4.4.2 Participant deviations from risk scores. For each prediction
made by participants in the treatment group, we measured how
far and in which direction that prediction deviated from the risk
assessment’s recommendation. That is, we measured dkj = p

k
j � r j .

The average deviation among the 7600 treatment group predictions
was 0.014, with a median deviation of 0. Participants deviated to a
higher risk prediction 26.9% of the time, matched the risk assess-
ment 40.8% of the time, and deviated to a lower risk prediction
32.3% of the time. The results from Section 4.2 suggest that these
deviations tend to make participant predictions less accurate than
the risk assessment.

As in the previous section, these statistics di�er by defendant
race. While the average deviation for white defendants was -0.002,
the average deviation for black defendants was 0.024 (p = 7⇥ 10�13,
95CI di�erence in means [0.019, 0.033]). This di�erence emerged
because participants were more likely to deviate positively from
the risk assessment when evaluating black defendants and to de-
viate negatively when evaluating white defendants (the average
deviation magnitude was the same across race for both positive
and negative deviations). As Figure 4 depicts, participants deviated
to a higher risk prediction 30.0% of the time for black defendants
compared to 22.0% of the time for white defendants (36.4% more),
and conversely deviated to a lower risk prediction 29.2% of the
time for black defendants compared to 37.2% of the time for white
defendants (21.5% less). Participants matched the risk assessment
in 40.8% of predictions when evaluating both races.

We regressed each deviation on the characteristics of the defen-
dant and the participant, the predictionmade by the risk assessment,
and the participant’s status in the experiment (i.e., which in the
sequence of 25 predictions the participant was making). Since these
deviations include repeated samples for each defendant and partici-
pant, we used a linear mixed-e�ects model with random e�ects for

the defendant and participant identities. Several characteristics of
defendants had statistically signi�cant associations with the devia-
tions: participants were more likely to deviate positively from the
risk assessment when evaluating younger defendants, defendants
arrested for a violent crime, defendants with more prior arrests
and convictions, and defendants with a prior failure to appear. Nei-
ther the defendant’s race nor any attributes of participants had a
statistically signi�cant relationship with deviations.

These results suggest that while participants did not deviate from
the risk assessment based explicitly on race, they deviated based
on attributes that are unevenly distributed across race: compared
to white defendants, black defendants on average have more prior
arrests, convictions, and failures to appear (Table A.1).

5 DISCUSSION
This study presents initial evidence regarding how risk assessments
in�uence human decision-makers. Con�rming our three hypothe-
ses, our results indicate that people underperform risk assessments
even when provided with its advice; are unable to evaluate the
performance of themselves or the risk assessment; and engage in
“disparate interactions,” whereby their use of risk assessments leads
to higher risk predictions about black defendants and lower risk
predictions about white defendants.

This work demonstrates how theoretical evaluations are neces-
sary but insu�cient to evaluate the impacts of risk assessments:
what appears to be a fair source of information can, depending
on how people interact with it, become a leverage point around
which discrimination manifests. It is necessary to place risk assess-
ments into a sociotechnical context so that their full impacts can
be identi�ed and evaluated.

Our results highlight a signi�cant but often overlooked aspect of
algorithmic decision-making aids: introducing risk assessments to
the criminal justice system does not eliminate discretion to create
“objective” judgments, as many have argued [9, 12, 34]. Instead,
risk assessments merely shift discretion to di�erent places, which
include the judge’s interpretation of the assessment and decision
about how strongly to rely on it. This reality must become a central
consideration of any proposals for and evaluations of risk assess-
ments, especially given that previous attempts to standardize the
criminal justice system—sentencing reform e�orts in the 1980s—
shifted discretion to prosecutors, generating a racially-biased rise
in excessive punishment [49].

A particular danger of judicial discretion about how to incorpo-
rate risk assessments into decisions is the potential for disparate
interactions: biases that emerge as an algorithmic prediction �lters
through a person into a decision. Our experiment participants were
25.9% more strongly in�uenced by the risk assessment to increase
their risk prediction when evaluating black defendants than white
ones, leading to a 20.3% larger average increase for black than white
defendants due the risk assessment. Moreover, participants were
36.4% more likely to deviate positively from the risk assessment
and 21.5% less likely to deviate negatively from the risk assessment
when evaluating black defendants.5

5 Although it is possible that participants predicted higher risk for black defendants to
account for the racial bias in arrests, we do not believe this was an important factor
since no participants mentioned any such thought process in the exit survey when
describing their behavior.
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These disparate interactions emerged through both direct and in-
direct bias: while race had a direct role in increasing the risk score’s
in�uence on participants, the disparities in in�uence and deviations
also arose due to participants responding to particularly salient fea-
tures that are unevenly distributed by race (such as number of prior
convictions)—essentially double-counting features for which the
risk assessment had already accounted. This behavior resembles
that of machine learning algorithms, which can be racially biased
even when race is not included as an explicit factor [3], and high-
lights the importance of studying the complex mechanisms through
which discrimination can manifest. Future work should explore
how di�erent ways of presenting and explaining risk assessments
(and of training people to use them) could improve performance
and in particular reduce disparate interactions.

An important research direction that could guide such e�orts
is to study the processes through which people make decisions
when provided with risk assessments. Our participants followed
several approaches when evaluating defendants, the most common
being using the risk assessment to in�uence their initial judgment
and using the risk assessment as a baseline (Table A.3). Analyz-
ing participant behavior from both of these perspectives indicated
related forms of disparate interactions. Meanwhile, the most suc-
cessful strategy was to directly follow the risk assessment. While
in theory it is possible for people to synthesize the risk assessment
with their own judgment to make better decisions than either could
alone, in practice we found no evidence that any strategy taken by
participants leads them to outperform the risk assessment.

A major limitation to people’s use of risk assessments is their in-
ability to evaluate their own and the risk assessment’s performance.
Many proponents defend the deployment of risk assessments on the
grounds that judges have the �nal say and can discern when to rely
on the predictions provided [37, 46, 63]. But our results indicate that
this is an unrealistic expectation: our participants’ judgments about
their own performance were negatively associated with their actual
performance, and their evaluations of the risk assessment had no
statistically signi�cant relationship with its actual performance
(other research has similarly shown that people struggle to detect
algorithmic mistakes across a variety of conditions [53]). Given
these results, it is no wonder that participants in the treatment
group underperformed the risk assessment. How can we expect
people to navigate the balance between their own judgment and a
risk assessment’s when they are unable to accurately assess their
own or the algorithm’s performance in the �rst place? Determining
how to incorporate a risk assessment into one’s own prediction is
arguably a more challenging task that requires more expertise than
merely making a prediction.

The results of this study raise one of the most important but
rarely-discussed issues at the heart of debates about risk assess-
ments: how should risk assessments be incorporated into existing
practices? On the one hand, risk assessments alone achieve better
performance than individuals (both with and without a risk assess-
ment’s aid) in terms of accuracy and false positive rates.6 Yet there

6 This result assumes a comparison between a single individual and a risk assessment.
This is in contrast to a recent study suggesting that humans are just as accurate as
COMPAS: that result holds only when the predictions of humans are aggregated to
create a “wisdom of the crowd” e�ect; in fact, that study similarly found COMPAS to
be more accurate than individuals [21].

are many reasons to be wary of relying too heavily on risk assess-
ments, including due process concerns, their embedding of discrim-
inatory and punitive approaches to justice, and their potential to
hinder more systemic criminal justice reforms [7, 31, 58]. Mean-
while, the current approach of presenting predictions to judges
without su�cient guidelines or training comes with the issues of
poor interpretation and disparate interactions.

The con�icts between these positions are apparent in how the
Wisconsin Supreme Court severely circumscribed the role of risk
assessments in its decision in State v. Loomis, regarding the use of
COMPAS in sentencing. Despite defending the use of COMPAS on
the grounds that it “has the potential to provide sentencing courts
with more complete information,” the Court also mandated that
“risk scores may not be used: (1) to determine whether an o�ender is
incarcerated; or (2) to determine the severity of the sentence” [63].
If COMPAS is not supposed to in�uence the sentence, there are
few purposes that the “more complete information” it provides can
serve—and few ways to ensure that it serves only those purposes.
In that case, why show it at all?

5.1 An Algorithm-in-the-Loop Framework
As computational systems permeate everyday life and inform crit-
ical decisions, it is of paramount importance to study how algo-
rithmic predictions impact human decision-making across a broad
range of contexts. Risk assessments are just one of an emerging
group of algorithms that are intended to inform people making deci-
sions (other examples include predictions to help companies hire job
applicants and to help doctors diagnose patients). Yet despite robust
research into the technical properties of these algorithms, we have
a limited understanding of their sociotechnical properties: most
notably, whether and how they actually improve decision-making.
To answer these questions, it is necessary to study algorithms fol-
lowing the notion of “technologies as social practice,” which is
grounded in the understanding that technologies “are constituted
through and inseparable from the speci�cally situated practices of
their use” [60].

A natural body of work from which to draw inspiration in study-
ing human-algorithm collaborations is human-in-the-loop (HITL)
systems. In settings such as social computing and active learning,
computational systems rely on human labor (such as labeling pho-
tos and correcting errors) to overcome limitations and improve
their performance. But where HITL processes privilege models and
algorithms, utilizing people where necessary to improve computa-
tional performance, settings like pretrial release operate in reverse,
using algorithms to improve human decisions.

This distinction suggests the need for an alternative framework:
algorithm-in-the-loop (AITL) systems.7 Instead of improving com-
putation by using humans to handle algorithmic blind spots (such
as analyzing unstructured data), AITL systems improve human de-
cisions by using computation to handle cognitive blind spots (such
as �nding patterns in large, complex datasets). This framework
centers human-algorithm interactions as the locus of study and

7 Although previous studies have used the phrase “algorithm-in-the-loop,” they have
de�ned it in the context of simulation and modeling rather than in relation to human-
in-the-loop computations and human-algorithm interactions [56, 64].
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prioritizes the human’s decision over the algorithm’s as the most
important outcome.

An algorithm-in-the-loop perspective can inform essential so-
ciotechnical research into algorithms. Recent work related to in-
terpretability provides one important direction where progress is
already beingmade [20, 52, 53]. Future analysis should focus on how
to develop and present algorithms so that people can most e�ec-
tively and fairly incorporate them into their deliberative processes,
with particular attention to improving evaluations of algorithm
quality and reducing disparate interactions. This may involve alter-
ing the algorithm in unintuitive ways: previous research suggests
that in certain situations a seemingly suboptimal algorithm actually
leads to better outcomes when provided to people as advice [23].

It will also be important to study the e�cacy of di�erent mecha-
nisms for combining human and algorithmic judgment across a vari-
ety of contexts. Most algorithm-in-the-loop settings involve simply
presenting an algorithmic output to a human decision-maker, rely-
ing on the person to interpret and incorporate that information. Yet
research within human-computer interaction and crowdsourcing
suggests that alternative approaches could lead to a better syn-
thesis of human and computer intelligence [8, 35, 39, 40]. Which
mechanisms are most e�ective (and desirable from an ethical and
procedural standpoint) will likely vary depending on the situation.

Finally, given that automation can induce a moral bu�er [11], it
is necessary to study how using algorithms a�ects people’s sense
of responsibility for their decisions. Given the all-too-common
expressions from engineers that they do not bear responsibility for
the social impacts of their technologies [36, 62], the potential for
automation bias raises the unsettling specter of situations in which
both the engineers developing algorithms and the people using
them believe the other to be primarily responsible for the social
outcomes. It is of vital importance to study whether algorithms
create a moral bu�er and to �nd ways to avoid such scenarios.

5.2 Limitations
Given that our experiments were conducted on a population of Me-
chanical Turk workers rather than actual judges in the courtroom,
it is necessary to circumscribe the interpretation of these results.
Judges have more expertise than laypeople at predicting pretrial
risk and are generally given more information about the risk assess-
ments in use. Interestingly, however, judges have been shown to
release many high-risk defendants and detain many low-risk ones
[43]. Judges may also be more reluctant to rely on risk assessments,
believing that their own judgment is superior: previous research
has shown that people with more expertise are less willing to take
advice [38, 48, 50], and a recent survey found that less than 10%
of judges believed that an actuarial assessment could outperform
their own predictions of risk [5].

Our study also fails to capture the level of racial priming that
could in�uence judges’ use of risk assessments. While our experi-
ment tells participants that a defendant is black or white, a judge
would also see the defendant’s name and physical appearance.
Studies have shown that employers discriminate based on racially-
indicative names [4] and that judges are harsher toward defendants
with darker skin and more Afrocentric features [22, 42]. Thus, it is

possible that the disparate interactions we observe in our experi-
ments could be heightened in the courtroom, where race is more
salient. Future research should study how people respond to risk
assessments as racial priming increases.

The short length of each trial (25 predictions over approximately
20 minutes) means that we could not capture how the relationships
between people and risk assessments evolve over extended periods
of time. This is an important factor to consider when deploying
algorithmic systems, especially given research demonstrating that
the changes instigated by risk assessments are short-lived [59]. The
immediate impacts of introducing algorithms into decision-making
processes may not indicate the long-term implications of doing so.
This is particularly true within the criminal justice system, where
political incentives and manipulation can distort the use of risk
assessments over time [31].

Thus, while this study hints at issues that may arise in the court-
room, it remains an open question how closely our results resemble
the outcomes of real-world implementation. Further studies must
be done, in both experimental and natural settings, before risk as-
sessments can be seriously considered for broader deployment in
the criminal justice system, if they are to be used at all.
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A APPENDIX: METHODS AND RESULTS
Stage 1 of the study involved developing a risk assessment for crim-
inal defendants being considered for pretrial release (to predict the
likelihood that a criminal defendant, if released, would be arrested
before trial or fail to appear in court for trial).

The goal of this stage was not to develop an optimal algorithm
for the purpose of pretrial risk assessment, but to develop a risk
assessment that could be presented to participants during the ex-
periments in Stage 2. The primary benchmark for the algorithm
was that it make predictions more accurately than humans; given
that that algorithms are more accurate than humans across a wide
variety of tasks, and in particular in the domain of pretrial risk
assessment [43], this benchmark was essential for creating a realis-
tic experimental environment. The results described in Section 4.2
clearly indicate that this criterion was satis�ed.

We used a dataset collected by the U.S. Department of Justice
that contains court processing information about 151,461 felony
defendants who were arrested between 1990 and 2009 in 40 of
the 75 most populous counties in the United States [61]. The data
includes information about arrest charges, demographic character-
istics, criminal history, pretrial release and detention, adjudication,
and sentencing (each row follows a speci�c case against an individ-
ual defendant; it is possible that the same person appears multiple
times across di�erent cases, but the data did not indicate individual
identities). We cleaned the dataset by removing all records with
missing values, and restricted our analysis to defendants who were
at least 18 years old and whose race was recorded as either black or
white. We further restricted our analysis to defendants who were
released before trial, and thus for whom we had ground truth data
about whether that person was rearrested or failed to appear before
trial.

This process yielded a dataset of 47,141 released defendants (Ta-
ble A.1). This population was 76.7% male and 55.7% black, with an
average age of 30.8 years. The most common o�ense type was drug
crimes (36.9%), followed by property crimes (32.7%), violent crimes
(20.4%), and public order crimes (10.0%). 63.4% of defendants had
previously been arrested and 46.5% had previously been convicted.
Of the 29,875 defendants who had previously been released before
a trial, 39.6% had failed to appear at least once. After being released,
15.0% of defendants were rearrested before trial and 20.3% of defen-
dants failed to appear for trial. We pooled these outcomes together
and de�ned any incidence of one or both of these outcomes as
violating the terms of pretrial release; 29.8% of released defendants
committed a violation.

We randomly split the dataset into train and test sets with 80%
and 20% of the records, respectively. We then trained a model using
gradient boosted trees [26] to predict which defendants would
violate pretrial release (i.e., which defendants would be rearrested or
fail to appear in court), based on �ve features about each defendant:
age, o�ense type, number of prior arrests, previous failure to appear,
and number of prior convictions. We excluded race and gender
from the model to match common practice among risk assessment
developers [46]. Because our experiment participants would be
predicting risk in increments of 10% (see Section 3.2), we rounded
each prediction to the nearest 10%.
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Figure A.1: Comparison of risk assessment predictions and
actual violation probabilities for black and white defen-
dants, indicating that the model is well-calibrated across
race. Bands indicate 95% con�dence intervals.

We then applied the model (i.e., the risk assessment) to make
predictions for every defendant in the test set. The model achieves
an area under the curve (AUC) of 0.67, indicating comparable accu-
racy to COMPAS [37, 45], the Public Safety Assessment [13], and
other risk assessments [14]. According to a recent meta-analysis of
risk assessments, our model has “Good” predictive validity [15].

We also evaluated the risk assessment for fairness. As Figure A.1
indicates, the model is well-calibrated: at every risk score from 10%
to 60% (the full range of risks predicted), black and white defendants
are statistically equally likely to violate pretrial release. We focused
on calibration not as an ideal metric for fairness (recognizing that
no perfect metric for fairness can exist [32]), but because it is the
most commonly-used approach for evaluating risk assessments
in practice [16, 25, 44]. In fact, similarly to COMPAS [3], we �nd
that our model disproportionately makes false positive errors for
black defendants compared to white defendants (7.0% versus 4.6%,
assuming a naïve threshold of 50%).

Given these evaluations for accuracy and fairness, our risk as-
sessment resembles those used within U.S. courts.

We then selected from the test set a sample of 500 defendants
whose pro�les would be presented to participants during the exper-
iments in Stage 2 of the study. To protect the privacy of defendants,
we restricted our sampling to include only defendants whose at-
tributes along the features shown to participants (the �ve features
included in the risk assessment along with race and gender) were
shared with at least two other defendants in the full dataset. While
this made it impossible to obtain a perfectly representative sample
from the test set, we found in practice that sampling with relative
selection weights equal to each defendant’s risk score yielded a
subset that closely resembles the full set of released defendants
across most dimensions (Table A.1).
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All Released All (Black) All (White) Experiment Sample Sample (Black) Sample (White)
N=47,141 N=26,246 N=20,895 N=500 N=303 N=197

Background
Male 76.7% 77.7% 75.4% 79.6% 81.9% 76.1%
Black 55.7% 100.0% 0.0% 60.6% 100.0% 0.0%
Mean age 30.8 30.1 31.8 28.7 27.7 30.3
Drug crime 36.9% 39.2% 34.0% 42.6% 44.9% 39.1%
Property crime 32.7% 30.7% 35.3% 34.6% 33.3% 36.5%
Violent crime 20.4% 20.9% 19.8% 17.8% 17.8% 17.8%
Public order crime 10.0% 9.3% 10.8% 5.0% 4.0% 6.6%
Prior arrest(s) 63.4% 68.4% 57.0% 54.4% 61.7% 43.1%
# of prior arrests 3.8 4.3 3.1 3.5 4.2 2.4
Prior conviction(s) 46.5% 51.2% 40.7% 35.4% 40.9% 26.9%
# of prior convictions 1.9 2.2 1.6 2.0 2.3 1.5
Prior failure to appear 25.1% 28.8% 20.4% 27.6% 33.0% 19.3%

Outcomes
Rearrest 15.0% 16.9% 12.6% 15.4% 17.8% 11.7%
Failure to appear 20.3% 22.6% 17.5% 19.6% 19.5% 19.8%
Violation 29.8% 33.1% 25.6% 29.8% 31.4% 27.4%

Table A.1: Demographics and criminal backgrounds for all of the defendants who were released before trial and for the 500-
defendant sample used in the Mechanical Turk experiments, broken down by defendant race. A violation means that the
defendant was rearrested before trial, failed to appear for trial, or both.
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Figure A.2: The intro survey presented to all participants.
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Figure A.3: The exit survey presented to participants in the treatment group. Participants in the control group were not pre-
sented with questions 2–5.
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All Control Treatment
N=554 N=250 N=304

Male 58.5% 60.4% 56.9%
Black 7.4% 8.0% 6.9%
White 80.5% 80.0% 80.9%
18-24 years old 9.7% 7.6% 11.5%
25-34 years old 42.4% 43.6% 41.4%
35-59 years old 43.9% 44.4% 43.4%
60-74 years old 4.0% 4.4% 3.6%
College degree or higher 65.5% 67.6% 63.8%
Criminal justice familiarity 2.8 2.9 2.8
Machine learning familiarity 2.4 2.3 2.4
Experiment clarity 4.4 4.5 4.4
Experiment enjoyment 3.6 3.6 3.7

Table A.2: Attributes of the participants in our experiments.

Deviated from the risk assessment (N=79, 50.6%; average reward=0.79)
“I used the risk scores as a starting point and then I made adjustments based on my own intuition about each case.”
“I used them as an anchor point, and then shifted up or down one depending on my personal feelings about the individual cases.”

Incorporated the risk assessment after making own judgment (N=58, 37.2%; average reward=0.79)
“I did not consider it until after making my own decision and then adjusted accordingly.”
“decided on a score myself �rst, then I let the risk score slightly sway my decision.”

Followed the risk assessment completely (N=10, 6.4%; average reward=0.81)
“I input exactly what the risk score indicated. It’s probably smarter than I am.”
“I used the risk score all the time for the entire HIT. Machine learning is much more accurate than humans.”

Ignored the risk assessment entirely (N=9, 5.8%; average reward=0.77)
“I just went with my own thoughts after reading each scenario.”
“I didn’t really pay that much attention to it since I felt the percentages were too low.”

Table A.3: A representative sample of the responses that treatment group participants submittedwhen asked on the exit survey
about how they incorporated the risk scores into their decisions (Question 5 in FigureA.3), broken downby the general strategy
they indicate having used.
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Figure A.4: Comparison of x) the di�erence between the risk score (r) and the control group’s average prediction (c) and y)
the di�erence between the distributions of predictions made by the control and treatment groups, as measured by the p-value
of a Mann-Whitney-Wilcoxon (MWW) test. Each dot represents one defendant and is made partially transparent such that
darker regions represent clusters of data. The blue line and gray band represent a local regression (LOESS) smoothing �t and
95CI. As r and c diverge, the treatment and control group prediction distributions also diverge. This indicates that, although
our analyses focused on the average predictions made by the control and treatment groups, the risk assessment in�uenced
the full distribution of predictions made by the treatment group.
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FigureA.5: Distribution of di�erences between participant performance and risk assessment (RA) performance over the course
of each treatment group participant’s trial. Negative values indicate that the treatment group participant received a lower
average reward than the risk assessment for the 25 predictions that the participant made. Out of the 304 treatment group
participants, 195 (64.1%) earned a lower average reward than the risk assessment, 37 (12.2%) earned an equal average reward,
and 72 (23.7%) earned a larger average reward.
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Figure A.6: Comparison of participant evaluations and the actual behaviors of themselves and the risk assessment (RA). Each
x-axis represents the participant re�ection provided for the �rst four questions of the exit survey (Figure A.3); the y-axes
represent a proxy for the actual outcome that the participant was evaluating (as described in Section 4.3). Each dot represents
one participant and is made partially transparent such that darker regions represent clusters of data. The linear regression
�ts presented here do not include the controls described in Section 4.3, but are shown for demonstration purposes, as the �ts
depicted closely resemble the relationships found in the full regression analyses.
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Figure A.7: Top: The average in�uence of the risk assessment on treatment group participants (as measured by Equation 1)
based on defendant race and the di�erence between the risk assessment and control group predictions (r � c), rounded to the
nearest 0.1. The bands depict the standard error for each group; the standard errors around the r � c = 0 groups are particularly
large because (given that r � c is the denominator of Equation 1) the in�uencemeasurements become unstable when r and c are
almost identical (for this reason we excluded the eight defendants for whom r = c from all three panels). The di�erences in the
risk assessment’s in�uence across race are statistically signi�cant only when r � c = 0.1: the average in�uence on participants
evaluating black defendants is 0.68 while the average in�uence on participants evaluating white defendants is 0.52 (p = 0.02,
95CI di�erence in means [0.02,0.30]). Middle: The actual change in risk prediction instigated by the risk assessment (i.e., t � c,
the numerator of Equation 1). The di�erences in the risk assessment’s pull across race are statistically signi�cant only when
r � c = 0.1: the average increase for black defendants is 0.064 while the average increase for white defendants is 0.051 (p = 0.042,
95CI di�erence in means [0.0005, 0.0255]). Bottom: The number of black and white defendants who fall into each category.
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