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The rise of machine learning has fundamentally altered decision making: rather than being made solely by
people, many important decisions are now made through an “algorithm-in-the-loop” process where machine
learning models inform people. Yet insucient research has considered how the interactions between people
and models actually inuence human decisions. Society lacks both clear normative principles regarding how
people should collaborate with algorithms as well as robust empirical evidence about how people do collaborate
with algorithms. Given research suggesting that people struggle to interpret machine learning models and to
incorporate them into their decisions—sometimes leading these models to produce unexpected outcomes—it is
essential to consider how dierent ways of presenting models and structuring human-algorithm interactions
aect the quality and type of decisions made.

This paper contributes to such research in two ways. First, we posited three principles as essential to ethical
and responsible algorithm-in-the-loop decision making. Second, through a controlled experimental study on
Amazon Mechanical Turk, we evaluated whether people satisfy these principles when making predictions
with the aid of a risk assessment. We studied human predictions in two contexts (pretrial release and nancial
lending) and under several conditions for risk assessment presentation and structure. Although these conditions
did inuence participant behaviors and in some cases improved performance, only one desideratum was
consistently satised. Under all conditions, our study participants 1) were unable to eectively evaluate the
accuracy of their own or the risk assessment’s predictions, 2) did not calibrate their reliance on the risk
assessment based on the risk assessment’s performance, and 3) exhibited bias in their interactions with the risk
assessment. These results highlight the urgent need to expand our analyses of algorithmic decision making
aids beyond evaluating the models themselves to investigating the full sociotechnical contexts in which people
and algorithms interact.
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topics→ Computing / technology policy; • Applied computing→ Law, social and behavioral sciences.
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1 INTRODUCTION
People and institutions increasingly make important decisions with the aid of machine learning
systems: judges use risk assessments to determine criminal sentences, municipal health departments
use algorithms to prioritize inspections, and banks use models to manage credit risk [3, 36, 64].
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These “algorithm-in-the-loop” settings involve machine learning models that inform people, with a
person rather than an algorithm making the nal decision [37].
This trend represents a fundamental shift in decision making: where in the past decision mak-

ing was a social enterprise, decision making today has become a sociotechnical aair. These
novel algorithm-in-the-loop decision making processes raise two questions—one normative, one
empirical—that require answers before machine learning should be integrated into some of society’s
most consequential decisions:

(1) What criteria characterize an ethical and responsible decision when a person is informed by
an algorithm?

(2) Do the ways that people make decisions when informed by an algorithm satisfy these criteria?

Both of these questions lack clear answers. While there exist many standards, policies, and studies
related to the decisions made by people and institutions, our normative and empirical understanding
of algorithm-in-the-loop decision making is far thinner.

Despite widespread attention to incorporating ethical principles (most notably, fairness, account-
ability, and transparency) into algorithms, the principles required of the people using algorithms
largely remain to be articulated and evaluated. For although calls to adopt machine learning models
often focus on the accuracy of these tools [14, 46, 59, 66], accuracy is not only attribute of ethical
and responsible decision making. The principle of procedural justice, for instance, requires that
decisions be (among other things) accurate, fair, consistent, correctable, and ethical [55]. Even as
algorithms bear the potential to improve predictive accuracy, their inability to reason reexively
and adapt to novel or marginal circumstances makes them poorly suited to achieving many of
these principles [2]. As a result, institutions implementing algorithmic advice may nd themselves
hailing the algorithm’s potential to provide valuable information while simultaneously cautioning
that the algorithm should not actually determine the decision that is made [74].
In practice, algorithm-in-the-loop decision making requires synthesizing the often divergent

capabilities of people and machine learning models. Despite this imperative, however, research
and debates regarding algorithmic decision making aids have primarily emphasized the models’
statistical properties (e.g., accuracy and fairness) rather than their inuence on human decisions
[3, 21]. Thus, even as institutions increasingly adopt machine learning models in an attempt to be
“evidence-based” [15, 50, 66, 73], relatively little is actually known about how machine learning
models aect decision making in practice. This lack of evidence is particularly troubling in light
of research which suggests that people struggle to interpret machine learning models and to
incorporate algorithmic predictions into their decisions, often leading machine learning systems to
generate unexpected and unfair outcomes [37, 67].
In this paper, we explore both the normative and empirical dimensions of algorithm-in-the-

loop decision making. We focused on risk assessments—machine learning models that predict the
probability of an adverse outcome—which are commonly used in algorithm-in-the-loop decisions
in settings such as the criminal justice system.
We began by articulating a framework with which to evaluate human-algorithm interactions,

positing three desiderata that are essential to eective and responsible decision making in algorithm-
in-the-loop settings. These principles relate to the accuracy, reliability, and fairness of decisions.
Although certainly not comprehensive, these desiderata provide a starting point on which to
develop further standards for algorithm-in-the-loop decision making.

We then ran experiments using Amazon Mechanical Turk to study whether people satisfy these
principles when making predictions about risk. We explored these decisions in two settings where
risk assessments are increasingly being deployed in practice—pretrial release hearings and nancial
loan applications [15, 50, 64]—and under several conditions for presenting the risk assessment
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or structuring the human-algorithm interaction. This experimental setup allowed us to evaluate
algorithm-in-the-loop decision making as a function of risk assessment presentation and to compare
outcomes across distinct prediction tasks. Although these experiments involved laypeople rather
than practitioners (such as judges or loan ocers), meaning that we cannot take the observed
behaviors to be a direct indication of how risk assessments are used in real-world settings, our
results highlight potential challenges that must be factored into considerations of risk assessments.
People’s behavior in the experiments reliably satised only one of our three principles for

algorithm-in-the-loop decision making. While almost every treatment improved the accuracy of
predictions, no treatment satised our criteria for reliability and fairness. In particular, we found
that under all conditions in both settings our study participants 1) were unable to eectively
evaluate the accuracy of their own or the risk assessment’s predictions, 2) did not calibrate their
reliance on the risk assessment based on the risk assessment’s performance, and 3) exhibited racial
bias in their interactions with the risk assessment. Further research is necessary to determine
whether the practitioners who use risk assessments exhibit similar behaviors.

These results highlight the urgent need to more rigorously study the impacts of risk assessments,
focusing on the full set of mechanisms through which potential outcomes come to pass. Risk
assessments have the potential to improve decision making, but can also lead to unintended out-
comes as they are integrated into human decision making processes and broader political contexts;
evaluations must therefore be grounded in rigorous sociotechnical analyses of the downstream
impacts [35]. As this study indicates, one essential component that shapes these outcomes is the
quality and reliability of human-algorithm interactions. Continued research into how people should
and do collaborate with machine learning models is necessary to inform the design, implementation,
and governance of algorithmic decision making aids being deployed across society.

2 RELATEDWORK
A core component of integrating a technical system into social contexts is ensuring that people
recognize when to rely on the tool and when to discount it. As technology is embedded into
critical human decisions, the stakes of human trust and reliance on technology rise, such that “poor
partnerships between people and automation will become increasingly costly and catastrophic”
[51]. Recent breakdowns in the human-automation partnership in self-driving cars and airplane
autopilot have led to disaster [5, 39]. In many contexts, designing eective human-machine collab-
orations hinges as much (if not more) on presenting guidance that is tailored to human trust and
understanding as it does on providing the technically optimal advice [26, 51].

Signicant research in human-computer interaction has considered how to develop systems that
eectively integrate human and computer intelligence [40, 45]. In the context of algorithm-assisted
human decision making, prior research has explored topics such as what interactions can facilitate
the development of machine learning models [9, 29, 47], how to improve human performance
with an algorithm’s assistance [12, 37, 48], and the ways in which laypeople perceive algorithmic
decisions [4, 28, 52]. Research related to human-algorithm interactions when making predictions
can be summarized into two broad categories of ndings.

2.1 People struggle to interpret and eectively use algorithms when making decisions
Several experimental studies have uncovered important issues that arise when people use algorithms
to inform their decision making. People often discount algorithmic recommendations, preferring
to rely on their own or other people’s judgment and exhibiting less tolerance for errors made
by algorithms than errors made by other people [22, 56, 76]. This may be due in part to the fact
that people struggle to evaluate their own and the algorithm’s performance [37, 48]. Although
people appear in some contexts to follow correct predictions more than incorrect ones [48], other
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studies suggest that people are unable to distinguish between reliable and unreliable predictions
[33] or to detect algorithmic errors [62]. Moreover, people have been shown to be inuenced by
irrelevant information, to rely on algorithms that are described as having low accuracy, and to
trust algorithms that are described as accurate but actually present random information [27, 48, 65].
And despite widespread calls for explanations and interpretable models, recent studies have found
that simple models do not lead to better human performance than black box models [62] and that
varying algorithmic explanations does not aect human accuracy [61].

In turn, although introducing algorithms into decision making can improve human performance,
even people who are shown an algorithm’s advice underperform the algorithm itself [37, 48]. It
remains an open question whether this outcome is fundamental to human-algorithm collaboration
or is due to poor interfaces, training, and other factors; notably, despite the assumption that humans
and algorithms can productively collaborate, prior research has suggested that the dierences
between human and algorithmic decision making cannot be leveraged to produce better predictions
than either could acting alone [70].

2.2 People oen use algorithms in unexpected and biased ways
A particular danger of breakdowns in human-algorithm collaborations is that the application of an
algorithm will lead to unintended behaviors and decisions. Ethnographic studies have documented
how the uses of algorithms in practice can dier signicantly from the planned and proclaimed
uses, with algorithms often being ignored or resisted by those charged with using them [7, 11]. In
other cases, the application of algorithms has prompted people to alter their behavior, becoming
overly xated on the algorithm’s advice or focusing on dierent goals [6, 42].
Criminal justice risk assessments represent a notable example of algorithms that are highly

indeterminate and often do not generate the intended or expected results [34]. Although these
algorithms are typically adopted with the explicit goal of reducing detention rates, in many cases
they have had only negligible impacts because judges ignore the majority of recommendations for
release. Risk assessments used in Kentucky and Virginia have thus far failed to produce signicant
and lasting increases in pretrial release, as judges often overrode the risk assessment when it
recommended release and reduced their reliance on the risk assessment over time [67, 68]. Similar
results have been found in Cook County, Illinois [58] and in Santa Cruz and Alameda County,
California [41].
There is also evidence that people’s interactions with risk assessments are fraught with racial

biases. An experimental study found that people using a risk assessment engaged in “disparate
interactions,” responding to the model’s predictions in biased ways that disproportionately led to
higher risk predictions about black criminal defendants than white ones [37]. Similarly, analyses
have observed that judges in Broward County, Florida penalized black defendants more harshly
than white defendants for crossing into higher risk categories [16] and that judicial use of a risk
assessment in Kentucky increased racial disparities in pretrial outcomes [1].

3 PRINCIPLES FOR ALGORITHM-IN-THE-LOOP DECISION MAKING
An algorithm-in-the-loop framework provides a new approach to studying algorithmic decision
making aids: rather than evaluating models like risk assessments simply as statistical tools of
prediction, we must consider them as sociotechnical tools that take shape only as they are integrated
into social contexts [37]. In other words, risk assessments are technologies of “social practice”
that “are constituted through and inseparable from the specically situated practices of their use”
[69]. This means that a risk assessment’s statistical properties (e.g., AUC and fairness) do not
fully determine the risk assessment’s impacts when introduced in social contexts. Given that the
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outcomes are ultimately more important than the statistical properties, a greater emphasis on the
relationship between risk assessments and their social impacts is necessary.

Although arguments in favor of risk assessments often focus on the predictive accuracy of these
tools [14, 46, 59, 66], many important decisions require more than just accuracy. For example,
the principle of procedural justice requires that decisions be (among other things) accurate, fair,
consistent, correctable, and ethical [55]. While many institutions have a long history of pursuing
these goals and creating procedures to ensure that they are satised, achieving these goals in
algorithm-in-the-loop settings requires new denitions, designs, and evaluations. Notably, although
algorithms often make more accurate predictions than people do, their inability to reason reex-
ively and adapt to novel or marginal circumstances makes them poorly suited to achieving many
principles of responsible and ethical decision making [2]. Algorithm-in-the-loop decision making
thus requires synthesizing the often divergent capabilities of people and machine learning models.
As a starting point toward this end, we suggest three principles of behavior that are desirable

in the context of making predictions (or decisions based on predictions) with the aid of machine
learning models. Our three desiderata are as follows:

Desideratum 1 (Accuracy). People using the algorithm should make more accurate predic-
tions than they could without the algorithm.

Desideratum 2 (Reliability). People should accurately evaluate their own and the algorithm’s
performance and should calibrate their use of the algorithm to account for its accuracy and
errors.

Desideratum 3 (Fairness). People should interact with the algorithm in ways that are unbi-
ased with regard to race, gender, and other sensitive attributes.

Desideratum 1 is the most straightforward: the goal of introducing algorithms is typically to
improve predictive performance [14, 46, 59, 66].

Desideratum 2 is important for algorithm-in-the-loop decision making to be reliable, accountable,
and fair. If people are unable to determine the accuracy of their own or the algorithm’s decisions,
they will not be able to appropriately synthesize these predictions to make reliable decisions.
Such evaluation is essential to correcting algorithmic errors: “overriding” the risk assessment is
commonly recognized as an essential feature of responsible decision making with risk assessments
[43, 50, 73, 74]. This principle is also important to ensuring the fairness of decisions, since algorithms
are prone to making errors on the margins [2] and minority groups are often less well represented
in datasets. Moreover, if people are unable to evaluate their own or an algorithm’s decisions, they
may feel less responsible and be held less accountable for the decisions they make.
Finally, Desideratum 3 connects to fundamental notions of fairness: decisions should be made

without prejudice related to attributes such as race and gender. This is particularly important to
consider given evidence that people engage in disparate interactions when making decisions with
the aid of a risk assessment [37].

These three principles guided our analyses of the experimental results: we evaluated the partici-
pant behaviors according to each desideratum, demonstrating how all three can be quantitatively
evaluated.

4 STUDY DESIGN
Our study consisted of two stages. The rst stage involved creating risk assessments for pretrial
detention and nancial lending. The second stage consisted of running experiments on Amazon
Mechanical Turk to evaluate how people interact with these risk assessments when making predic-
tions. The full study was reviewed and approved by the Harvard University Institutional Review
Board and the National Archive of Criminal Justice Data.
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4.1 Risk assessments
We began our study by creating risk assessments for pretrial detention and nancial lending. Our
goal was not to develop optimal risk assessments, but to develop risk assessments that resemble
those used in practice and that could be presented to participants during the Mechanical Turk
experiments.

4.1.1 Pretrial detention. When someone is arrested, courts can either hold that person in jail until
their trial or release them with a mandate to return for their trial (many people are also released
under conditions such as paying a cash bond or being subject to electronic monitoring). The higher
the perceived risk that a defendant, if released, would fail to return to court for their trial or would
commit any crimes, the more likely that a court is to detain that person until their trial.
To create our pretrial risk assessment, we used a dataset collected by the U.S. Department of

Justice that contains court processing information pertaining to 151,461 felony defendants who were
arrested between 1990 and 2009 in 40 of the 75 most populous counties in the United States [71].
The data includes information about the arrest charges, the defendant’s demographic characteristics
and criminal history, and the outcomes of the case related to pretrial release (whether the defendant
was released before trial and, if so, whether they were rearrested before trial or failed to appear in
court for trial). We cleaned the dataset to remove incomplete entries and restricted our analysis to
defendants who were at least 18 years old, whose race was recorded as either black or white, and
who were released before trial (and thus for whom we had ground truth data about whether that
person was rearrested or failed to appear).

This yielded a dataset of 47,141 defendants (Table 1). The defendants were primarily male (76.7%)
and black (55.7%), with an average age of 30.8 years. Among these defendants (all of whom were
released before trial), 15.0% were rearrested before trial, 20.3% failed to appear for trial, and 29.8%
exhibited at least one of these outcomes (which we dened as violating the terms of pretrial release).
We then trained a model using gradient boosted trees [31] to predict which defendants would

violate pretrial release (i.e., which defendants would be rearrested before trial or fail to appear in
court for trial), based on ve features about each defendant: age, oense type, number of prior
arrests, number of prior convictions, and previous failure to appear. We excluded race and gender
from the model to match common practice among risk assessment developers [50]. For every
defendant, we used the xgboostExplainer package to determine the log-odds inuence of each
attribute on the risk assessment’s prediction [30].

We evaluated the model using ve-fold cross-validation and found an average test AUC of 0.66
(ranging from 0.655 to 0.673 across the ve folds). This indicates comparable accuracy to COMPAS
[43, 49], the Public Safety Assessment [18], and other risk assessments [19]. According to a recent
meta-analysis of risk assessments, our model has “Good” predictive validity [20]. We also evaluated
the risk assessment for fairness and found that it is well calibrated. Given these evaluations, our
pretrial risk assessment resembles those used within U.S. courts. We selected the highest performing
of the ve models (along with its corresponding training and test sets) for use in our experiments.
We selected from the test set a sample of 300 defendants whose proles would be shown to

participants during the Mechanical Turk experiments (Table 1). To protect defendant privacy, we
could present information about only those defendants whose displayed attributes were shared
with at least two other defendants in the full dataset. Although this restriction meant that we could
not select a uniform random sample from the full population, we found in practice that sampling
from the restricted test set with weights based on each defendant’s risk score yielded a sample
population that resembled the full set of released defendants across most dimensions.
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Table 1. Summary statistics for all of the defendants who were released before trial and for the 300-defendant
sample used in the Mechanical Turk experiments, broken down by defendant race. A violation means that
the defendant was rearrested before trial, failed to appear for trial, or both.

All Black White Sample Black White
N=47,141 N=26,246 N=20,895 N=300 N=178 N=122

Background
Male 76.7% 77.7% 75.4% 85.7% 87.6% 82.8%
Black 55.7% 100.0% 0.0% 59.3% 100.0% 0.0%
Mean age 30.8 30.1 31.8 27.7 27.4 28.2
Drug crime 36.9% 39.2% 34.0% 44.3% 49.4% 36.9%
Property crime 32.7% 30.7% 35.3% 36.0% 32.0% 41.8%
Violent crime 20.4% 20.9% 19.8% 14.7% 14.0% 15.6%
Public order crime 10.0% 9.3% 10.8% 5.0% 4.5% 5.7%
Prior arrest(s) 63.4% 68.4% 57.0% 55.0% 66.9% 37.7%
# of prior arrests 3.8 4.3 3.1 3.6 4.6 2.2
Prior conviction(s) 46.5% 51.2% 40.7% 39.7% 50.0% 24.6%
# of prior convictions 1.9 2.2 1.6 2.2 2.8 1.3
Prior failure to appear 25.1% 28.8% 20.4% 23.7% 30.3% 13.9%

Outcomes
Rearrest 15.0% 16.9% 12.6% 19.0% 24.2% 11.5%
Failure to appear 20.3% 22.6% 17.5% 23.3% 28.1% 16.4%
Violation 29.8% 33.1% 25.6% 32.3% 39.9% 21.3%

4.1.2 Financial loans. When someone applies for a nancial loan, it is common for the potential
lender to assess the risk that the borrower will fail to pay back the money (known as “defaulting”
on the loan). The more likely that someone appears to pay o the loan, the more likely the lender
is to provide money to that person.
To create our loans risk assessment, we used a dataset about loans from the nancial company

Lending Club, which posts anonymized loan data on its website [53]. The data contains records
about all 421,095 loans issued during 2015, including information such as the loan applicant’s job,
annual income, and credit score; the loan amount and interest rate; and whether the loan was paid
o. The data did not include any demographic information about loan applicants such as their age,
race, or gender. We classied credit scores into one of ve categories (Poor, Fair, Good, Very Good,
and Exceptional) dened by FICO [60] and limited the data to loans that have been either fully paid
or defaulted on.
This yielded a dataset of 206,913 issued loans (Table 2). The average loan was for $15,133.51;

the average applicant had an income of $78,093.47 and a “Good” credit score. Approximately
three-quarters of these loans were fully paid.

We trained a model using gradient boosted trees to predict which loan applicants would default
on their loans. Our model considered seven factors about each loan: the applicant’s annual income,
credit score, and home ownership status; the value and interest rate of the loan; and the number
of months to pay o the loan and the value of each monthly installment. Finally, we used the
xgboostExplainer package to determine the log-odds inuence of each attribute on the risk
assessment’s prediction about each loan.
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Table 2. Summary statistics for all approved loans in 2015 and for the 300-loan sample used in the Mechanical
Turk experiments. Numbers in parentheses represent standard deviations.

All Sample
N = 206,913 N = 300

Applicant
Annual income $78,093.47 ($73,474.56) $83,190.08 ($83,681.52)
Credit score 695.3 (30.5) 693.9 (30.3)
“Good” credit score 71.2% 70.7%
Home owner 10.2% 10.0%
Renter 40.1% 40.3%
Has mortgage 49.7% 49.7%

Loan
Loan amount $15,133.51 ($8,575.05) $15,377.75 ($8,520.84)
36 months to pay o loan 70.5% 73.3%
60 months to pay o loan 29.5% 26.7%
Monthly payment $448.49 ($251.44) $462.19 ($253.86)
Interest rate 12.9% (4.5%) 13.05% (4.5%)

Outcomes
Fully paid 74.1% 74.0%
Charged o 25.9% 26.0%

We evaluated the model using ve-fold cross-validation and found an average test AUC of 0.71
(ranging from 0.706 to 0.715 across the ve folds). This is similar to the performance of other loan
default risk assessments that have been developed [72] and suggests “Excellent” performance [20].
We selected the highest performing of the ve models (along with its corresponding training and
test sets) for use in our experiments.

We selected a uniform random sample of 300 loans from the test set that would be presented to
our experiment participants (Table 2).

4.2 Experimental setup
The second part of the study involved conducting behavioral experiments on Amazon Mechanical
Turk to determine how people interact with these two risk assessments when making predictions.
Each trial consisted of a consent page, a tutorial, an intro survey (to obtain demographic information
and other participant attributes), the primary experimental task comprising a series of predictions,
and an exit survey (to obtain participant reections on the task, in the form of both multiple choice
and free response questions). Both the intro and exit surveys included a simple question designed
to ensure that participants were paying attention; we ignored data from participants who failed
to answer both of these questions correctly. We also included a comprehension test with several
multiple choice questions at the end of the tutorial; we ignored data from participants who required
more than three attempts to answer every question correctly. We restricted the task to Mechanical
Turk workers inside the United States who had an historical acceptance rate of at least 75%.

When participants entered the task, they were randomly sorted into one of two settings: pretrial
or loans. Participants in the pretrial setting were required to estimate the likelihood that criminal
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Fig. 1. Examples of the prompts presented to participants in two of the six treatments. The top example is
from the Default treatment (note that the “40%” bubble is already filled in, following the risk assessment’s
prediction) in the pretrial seing, while the boom example is from the Explanation treatment in the loans
seing.

defendants will be arrested before trial or fail to appear in court for trial. Participants in the loans
setting were required to estimate the likelihood that a loan applicant will default on their loan
(Figure 1). In both settings, participants were presented with narrative proles about a uniform
random sample of 40 people drawn from the 300-person sample populations and were asked to
predict their outcomes on a scale from 0% to 100% in intervals of 10%. Proles in the crime setting
included the ve features that the risk assessment incorporated as well as the race and gender of
each defendant (we included these latter two features in the proles despite not including them in
the risk assessment because judges are exposed to these attributes in practice). Proles in the loans
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setting included the same seven features that were included in the model. So that participants could
look up background information and the denitions of key terms, the tutorial was visible at the
bottom of the screen throughout the entire prediction task. Each worker was allowed to participate
in each setting only once.

After being sorted into one of the two settings, participants were then randomly sorted into one
of six conditions:

Baseline. Participants were presented with the narrative prole, without any information
regarding the risk assessment. This condition represents the status quo prior to risk assess-
ments, in which people made decisions without the aid of algorithms, and was one of our
two control conditions.

RA Prediction. Participants were presented with the narrative prole as well as the risk
assessment’s prediction in simple numeric form. This condition represents the simplest
presentation of a risk assessment and the typical risk assessment status quo, in which the
advice of a model is presented in numerical or categorical form as a factor for the human
decision maker to consider. This treatment served as the second control condition against
which we evaluated the following four treatments, which represent a core (though not
exhaustive) set of potential reforms to algorithmic decision aids.

Default. Participants were presented with the RA Prediction condition, except that the predic-
tion form was automatically set to the risk assessment’s prediction (Figure 1). Participants
could select any desired value, however. A recent study found that many people followed
this strategy when making predictions with the aid of a risk assessment, looking at the
algorithm’s prediction rst and then considering whether to deviate from that value [37].
Moreover, this condition accords with the implementations of risk assessments that treat the
model’s prediction as the presumptive default and require judges to justify any overrides
[13, 73].

Update. Participants were rst presented with the Baseline condition; after making a prediction,
participants were presented with the RA Prediction condition (for the same case) and asked
to make the prediction again. A recent study found that many people rst made a prediction
by themselves and then took the algorithm into model when making decisions with the aid of
a risk assessment [37]. This treatment adds structure to the prediction process (by prompting
people to focus on the narrative prole before considering the risk assessment’s prediction),
which prior research has found improves decision making [44, 54].

Explanation. Participants were presented with the RA Prediction condition along with an
explanation that indicated which features made the risk assessment predict notably higher
or lower levels of risk (Figure 1).1 This treatment follows from the many calls to present
explanations of machine learning predictions [23, 24, 63]. In addition, by indicating which
attributes strongly inuenced the risk assessment’s prediction, this treatment may prevent
people from double counting features that the model had already considered, a problem
found in prior research [37].

Feedback. Participants were presented with the RA Prediction condition; after submitting each
prediction, participants were presented with an alert indicating the outcome of that case (e.g.,
whether the loan applicant actually defaulted on their loan). Although in practice immediate
feedback on the outcomes of pretrial release or nancial loans would not be available, this
treatment provides one form of training for the users of machine learning systems, which is

1The explanations were derived from the log-odds inuence of each factor (calculated in Section 4.1), with a threshold of 0.1
and -0.1 to be included in the lists of positive and negative factors, respectively.
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often regarded as an essential ingredient for the eective implementation of risk assessments
[8, 43, 73].

We used the same set of 300 cases for all six treatments in both settings, allowing us to directly
measure the impact of each treatment on behavior. Because our experiment participants predicted
risk in increments of 10%, we rounded the risk assessment predictions to the nearest 10% when
presenting them to participants and when comparing the performance of participants and the risk
assessments.
Participants were paid a base sum of $2 for completing the study, plus an additional reward

of up to $2 based on their performance. We allocated rewards following a Brier score function:
score = 1 − (prediction − outcome)2, where prediction ∈ {0, 0.1, . . . , 1} and outcome ∈ {0, 1}. The
Brier score is bounded between 0 (worst possible performance) and 1 (best possible performance),
and measures the accuracy and calibration of predictions about a binary outcome.2 We mapped
the Brier score for each prediction to a payment using the formula payment = score ∗ $0.05, such
that perfect accuracy on all 40 predictions would yield a bonus of $2. Because the Brier score is
a proper score function [32], participants were incentivized to report their true estimates of risk.
We articulated this to participants during the tutorial and included a question about the reward
structure in the comprehension test to ensure that they understood.

4.3 Analysis
We analyzed the behavior of participants using metrics related to three topics: the quality of
participant predictions, the inuence of the risk assessment on participant predictions, and the
extent to which participants exhibited bias when making predictions.

4.3.1 Prediction performance measures. The rst set of metrics evaluated the quality of participant
predictions across treatments.
We evaluated the quality of each prediction using the Brier score. When presented with a loan

applicant who does not default on their loan, for example, a prediction of 0% risk would yield a
score of 1, a prediction of 100% would yield a reward of 0, and a prediction of 50% would yield a
score of 0.75.
We dened the “participant prediction score” as the average Brier score attained among the

40 predictions that each participant made. Similarly, the “risk assessment prediction score” is the
average Brier score attained by the risk assessment. These two metrics were used to evaluate the
performance of each participant and the risk assessment.
We dened the performance gain produced by each treatment t as the improvement in the

participant prediction score achieved by participants in treatment t over participants in the Baseline
condition, relative to the performance of the risk assessment:

Gaint =
St − SB
SR − SB

(1)

where St , SB , and SR represent the average prediction scores of participants in the treatment t ,
of participants in Baseline, and of the risk assessment, respectively. By denition, the gain of the
Baseline condition is 0 and the gain of the risk assessment is 1.

4.3.2 Risk assessment influence measures. The second set of metrics evaluated how much the risk
assessment inuenced participant predictions.
We measured the inuence of the risk assessment by comparing the predictions made by par-

ticipants who were shown the risk assessment with the predictions about the same case made by
2Because the sample populations were restricted to defendants who were released before trial and loans that were granted,
we have ground truth data about the binary outcome of each case.
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participants who were not shown the risk assessment. That is, the inuence of the risk assessment
on the prediction pki by participant k about case i ∈ {1, . . . , 300} is

Iki =
pki − bi

ri − bi
(2)

where bi is the average prediction about that case made by participants in the Baseline treatment
and ri is the prediction about that case made by the risk assessment. For participants in Update,
bi is bki : participant k’s initial prediction about case i before being shown the risk assessment’s
prediction. This is akin to the “weight of advice” metric that has been used in other contexts to
measure how much people alter their decisions when presented with advice [57, 75]. To obtain
reliable measurements, when evaluating risk assessment inuence we excluded all predictions for
which |ri − bi | < 0.05.

Given an inuence Iki , we can express each prediction as a weighted sum of the risk assessment
and baseline predictions, where pki = (1 − Iki )bi + I

k
i ri . I = 0 means that the participant ignored the

risk assessment, I = 0.5 means that the participant equally weighed their initial prediction and the
risk assessment, and I = 1 means that the participant relied solely on the risk assessment.

4.3.3 Disparate interaction measures. The third set of metrics evaluated whether participants
responded to the risk assessment in a racially biased manner. Following prior work, we evaluated
“disparate interactions” by comparing the behaviors of participants when making predictions about
black and white criminal defendants [37].3 We measured disparate interactions in two ways.
Our rst measure of disparate interactions compared the inuence of the risk assessment on

predictions made about black and white defendants. We divided the data based on whether the risk
assessment prediction ri was greater or less than the baseline prediction bi (and thus whether the
risk assessment was likely to pull participants toward higher or lower predictions of risk). For each
of these two scenarios, we measured the risk assessment’s inuence on predictions about black
defendants and white defendants; for example, we dened the inuence on predictions about black
defendants when ri > bi as Iblack,> = mean{Iki |∀k,Racei = black, ri > bi }. We then dened the
RA inuence disparity as follows:

RA inuence disparity> = Iblack,> − Iwhite,>

RA inuence disparity< = Iblack,< − Iwhite,<
(3)

RA inuence disparity> > 0 means that when ri > bi , participants were more strongly inuenced
to increase their predictions of risk when evaluating black defendants than when evaluating white
defendants.
Our second measure of disparate interactions compared the extent to which participants de-

viated from the risk assessment’s suggestion when making predictions. For each prediction pki
by participant k about defendant i , we measured the participant’s deviation from the risk assess-
ment as dki = pki − ri (i.e., dki > 0 means that participant k predicted a higher level of risk than
the risk assessment about defendant i). We used this metric to measure the average deviation
for each race; for example, the average deviation for all predictions about black defendants is
Dblack = mean{dki |∀k,Racei = black}. We then dened the Deviation disparity as follows:

Deviation disparity = Dblack − Dwhite (4)

Deviation disparity > 0 means that participants were more likely to deviate positively when
evaluating black defendants than when evaluating white defendants.
3Because we did not possess demographic characteristics about the loan applicants, we applied this analysis only to the
pretrial setting.
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5 RESULTS
We conducted trials on Mechanical Turk over the course of several weeks in March 2019. Filtering
out workers who failed at least one of the attention check questions, who required more than
three attempts to pass the comprehension test, and who participated in the experiment more than
once4 yielded a population of 1156 participants in the pretrial setting and 732 participants in the
loans setting (Table 3). Across both settings, a majority of participants were male, white, and have
completed at least a college degree. We asked participants to self-report their familiarity with the
U.S. criminal justice system, nancial lending, and machine learning on a Likert scale from “Not at
all” (1) to “Extremely” (5). The average reported familiarity with the three topics in each setting
was between “Slightly” (2) and “Moderately” (3), with little variation across treatments.

Participants reported in the exit survey that the experiment paid well, was clear, and was
enjoyable. Considering both the base payment and the bonus payment, participants in the pretrial
setting earned an average wage of $15.20 per hour and participants in the loans setting earned an
average wage of $17.18 per hour. Participants were also asked in the exit survey to rate how clear
and enjoyable the experiment was on a Likert scale from “Not at all” (1) to “Extremely” (5). More
than 90% of participants in both settings reported that the experiment was “Very” or “Extremely”
clear, and more than half of participants in both settings stated that the experiment was “Very” or
“Extremely” enjoyable.

In response to exit survey questions asking how they made predictions, participants reported a
variety of strategies for using the risk assessment:

• Follow the risk assessment in most or all cases (e.g., “i mostly trusted the algorithm to be
more objective than i was.”).

• Use the risk assessment as a starting point and then adjust based on the narrative prole (e.g.,
“It served as a jumping o point for my prediction.”).

• Rely on the risk assessment only when unsure about a particular prediction (e.g., “I put my
trust into the algorithm’s predictions for when I felt like I wasn’t too sure.”).

• Make a prediction without the risk assessment and then adjust based on the risk assessment
(e.g., “I tried not to look at it until I came to my own conclusion and then I rated my score
against the computers.”).

• Ignore the risk assessment (e.g., “I don’t think the algorithm can be relied on”).
Participants in the pretrial setting also reported diverging approaches with regard to race: while

4.4% of participants reported that they considered race whenmaking predictions, 2.2% of participants
reported explicitly ignoring race. These opposing strategies reect dierences in the perceived
relationship between race and prediction: participants in the rst category saw race as a factor that
could improve their predictive accuracy, while participants in the second category saw race as a
factor that should not be incorporated into predictions of risk (e.g., “I tried to ignore race”).

5.1 Desideratum 1 (Accuracy)
Desideratum 1 states that people using the algorithm should make more accurate predictions than
they could if working alone. We found that every treatment except Feedback reliably improved
performance over the Baseline treatment and that the Update treatment yielded the best performance
across both settings.

Across all predictions in the pretrial setting, the average participant prediction score was 0.768 and
the average risk assessment prediction score was 0.803. Aside from Feedback (whose performance
was not statistically distinct from that of Baseline), every treatment yielded a performance that was

4A server load issue prevented us from recognizing all repeat users when they entered the experiment.
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Table 3. Aributes of the participants in our experiments.

Pretrial Loans
N=1156 N=732

Demographics
Male 55.3% 53.0%
Black 7.1% 7.2%
White 77.2% 77.6%
18-24 years old 8.4% 7.9%
25-34 years old 42.4% 44.5%
35-59 years old 45.0% 43.2%
60+ years old 4.2% 4.4%
College degree or higher 70.9% 71.7%
Criminal justice familiarity 2.8 2.9
Financial lending familiarity 2.7 2.9
Machine learning familiarity 2.4 2.5

Treatment
Baseline 16.5% (N=191) 15.3% (N=112)
Risk Assessment 17.3% (N=200) 16.9% (N=124)
Default 16.9% (N=195) 17.6% (N=129)
Update 16.1% (N=186) 17.9% (N=131)
Explanation 15.1% (N=174) 16.8% (N=123)
Feedback 18.2% (N=210) 15.4% (N=113)

Outcomes
Participant hourly wage $15.20 $17.18
Experiment clarity 4.4 4.4
Experiment enjoyment 3.5 3.7

statistically signicantly greater than Baseline and lower than the risk assessment. Compared to
RA Prediction, which had an average prediction score of 0.774, two treatments (aside from Baseline)
had statistically signicant dierences: Feedback had a lower average prediction score of 0.751
(p < 10−6, Cohen’s d = 0.08), while Update had a higher average score of 0.782 (p = 0.041, d = 0.03).
The gain produced by each non-Baseline treatment (Equation 1) ranged from 0.011 for Feedback
to 0.603 for Update, while RA Prediction achieved a gain of 0.464 (Figure 2). Update produced a
prediction score that was 1.0% greater and a gain that was 30.0% larger than RA Prediction.
A similar pattern emerged in the loans setting. Across all predictions in the pretrial setting,

the average participant prediction score was 0.793 and the average risk assessment prediction
score was 0.823. Compared to RA Prediction, which had an average prediction score of 0.802, two
treatments (aside from Baseline) had statistically signicant dierences: Feedback had a lower
average prediction score of 0.779 (p < 10−4, d = 0.09), while Update had a higher average score of
0.813 (p = 0.019, d = 0.05). The gain produced by each non-Baseline treatment ranged from 0.327
for Feedback to 0.821 for Update, while RA Prediction achieved a gain of 0.682 (Figure 2). In other
words, Update produced a prediction score that was 1.4% greater and a gain that was 20.4% larger
than RA Prediction.
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Fig. 2. The relative performance gain (Equation 1) achieved by each experimental condition across the pretrial
and loans seings. In both seings, the Update treatment performed statistically significantly beer than RA
Prediction and the Feedback treatment performed statistically significantly worse. Across the two seings,
the gain of the conditions was highly correlated.

The relative performance of each treatment was similar across the two settings (Figure 2): the gain
of the ve non-Baseline treatments had a Pearson correlation of 0.96 (p = 0.010) and a Spearman
correlation of 0.9 (p = 0.083). In both settings, Feedback yielded signicantly worse performance
than RA Prediction, while Update produced signicantly better performance.

To evaluate the relationship between model performance and model presentation, we measured
how much more or less accurate the risk assessment would have needed to be for RA Prediction
to yield the same performance as the other treatments. Taking all of the predictions made by
participants in RA Prediction, we regressed the participant prediction score on the risk assessment’s
prediction score to determine how participant performance depends on model performance. In both
cases the slope was close to 1 (1.14 in pretrial, 0.98 in loans) and was signicant with p < 10−15. In
the pretrial setting, Update was equivalent to RA Prediction with a risk assessment that performs
0.91% better than the actual risk assessment while Feedback was equivalent to RA Prediction with
a risk assessment that performs 2.52% worse (a range of 3.43%). In the loans setting, Update was
equivalent to RA Prediction with a risk assessment that performs 1.35% better than the actual risk
assessment while Feedback was equivalent to RA Prediction with a risk assessment that performs
2.91% worse (a range of 4.26%).
We observed several patterns that can partially account for the dierent performance levels

observed. The average participant prediction score in each treatment was closely related to the rate
at which participants matched their prediction to the risk assessment’s prediction: the more often
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participants in a treatment followed the risk assessment’s advice, the better the average participant
prediction score in that treatment (p = 0.012 in pretrial, p = 0.055 in loans).
Although we were unable to ascertain clear explanations for why participants matched the

risk assessment at dierent rates in every treatment, a striking pattern emerged in the Feedback
treatment, which had by far the lowest match rate in both settings: the match rate declined
drastically after the rst prediction. In the pretrial setting, for example, the match rate of the rst
prediction in Feedback was 42.9%, whereas the match rate for the following 39 predictions ranged
between 22.9% and 31.4% (average=26.4%). This was due to a shift in participant predictions toward
the extremes (0% and 100%). For instance, the rate at which participants predicted 0% risk increased
by a factor of 1.8 and 2.8 after the rst prediction in the pretrial and loans settings, respectively.
This indicates that many participants responded to the feedback presented after the rst prediction
(this feedback was necessarily binary, since the outcome either did or did not occur) by treating
their own predictions as binary. This change in behavior led to a decrease in the performance of
participants in the Feedback treatment.
We further analyzed the Update treatment by evaluating the quality of participants’ initial

predictions, which they made before being shown the risk assessment for that case. Surprisingly,
despite making predictions under the same condition as participants in Baseline, participants’
initial predictions in Update outperformed the predictions made in Baseline (pretrial: 0.772 vs. 0.750,
p < 10−5; loans: 0.799 vs. 0.757, p < 10−14). This appeared to be due to the risk assessment serving
a training role for participants: the initial predictions in Update improved over the course of the 40
predictions in the pretrial setting5 (p = 0.015) and exhibited a sharp improvement after the rst
prediction in the loans setting, suggesting that being shown an algorithm’s prediction about some
cases can help people make more accurate predictions about future cases. The nal predictions
in Update, made with the benet of the risk assessment’s advice, provided further improvement
over the initial predictions (pretrial: 0.782 vs. 0.772, p = 0.014; loans: 0.813 vs. 0.799, p = 0.002).
These results suggest that the improvement produced by the Update treatment was twofold: rst, it
trained participants to make more accurate predictions in general, and second, it provided the risk
assessment’s prediction for the particular case at hand.

5.2 Desideratum 2 (Reliability)
Desideratum 2 states that people should accurately evaluate their own and the algorithm’s per-
formance and should calibrate their use of the algorithm to account for its accuracy and errors.
This principle involves two components: rst, the ability to evaluate performance, and second, the
ability to calibrate a decision based on the algorithm’s performance. We found that participants
could not reliably exhibit either of these behaviors in any treatment.

5.2.1 Evaluation. We assessed whether participants could evaluate their own and the risk assess-
ment’s performance by comparing participant exit survey responses to the actual behaviors that
they exhibited and observed (Table 4). Participants were asked to respond to each question on a
Likert scale from “Not at all” (1) to “Extremely” (5).
To measure perceptions of their own performance, all participants were asked “How condent

were you in your decisions?” We evaluated whether participants’ self-reported condence in their
performance was related to their actual performance. The average participant condence was 3.1
in pretrial and 3.2 in loans. Within each treatment in both settings, we regressed condence on
performance, controlling for each participant’s demographic information and exit survey responses,
along with the risk assessment’s performance (Table 4). Across both settings, the only statistically
5In only one other treatment across the two settings did participant performance improve statistically signicantly over
time.
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Table 4. Summary of participant abilities to evaluate performance (first two columns) and to calibrate their
predictions (third column). The columns measure the relationships between between participant confidence
and actual performance (Confidence), participant estimates of the algorithm’s performance and its actual
performance (RA Accuracy), and participant reliance on the risk assessment and the risk assessment’s
performance (Calibration). + signifies a positive and statistically significant relationship, - signifies a negative
and statistically significant relationship, and 0 signifies no statistically significant relationship. In all cases, +
means that the desired behavior was observed.

Condence RA Accuracy Calibration
Pretrial Loans Pretrial Loans Pretrial Loans

RA Prediction 0 0 0 0 - 0
Default 0 - 0 - 0 0
Update 0 - - - 0 0
Explanation 0 0 0 0 - +
Feedback 0 0 0 0 - 0

signiant relationships between a participant’s condence and performance emerged as negative
negative associations in Default and Update in loans (p = 0.03 and p = 0.047, respectively). In none
of the treatments could participants reliably evaluate their performance, in some cases actually
performing less well as they became more condent.

To measure participant evaluations of the risk assessment’s performance, we asked every partici-
pant who was shown the risk assessment “How accurate do you think the risk score algorithm is?”
and analyzed whether participant responses reected the risk assessment’s accuracy.6 The average
report of algorithm accuracy was 3.1 in pretrial and 3.3 in loans. Within each treatment in both
settings, we regressed the participant evaluations of the risk assessment’s accuracy against the
risk assessment’s actual performance, controlling for each participant’s performance, demographic
information, and exit survey responses (Table 4). In the Update treatment in both settings (p = 0.04
in pretrial and p < 10−3 in loans) and in the Default treatment in loans (p = 0.01), participant
evaluations of the risk assessment were negatively associated with the risk assessment’s actual
performance. In no treatment or setting were participants able to accurately evaluate the risk
assessment’s performance.

5.2.2 Calibration. To evaluate whether participants calibrated their use of the risk assessment
to the risk assessment’s performance, we compared the inuence of the risk assessment on each
prediction (Equation 2) with the quality of the risk assessment’s predictions. Within each treatment,
we regressed the risk assessment’s inuence on each participant prediction on the risk assessment’s
score for that prediction (Table 4). Across all settings and treatments, only the Explanation treatment
in the loans setting had a positive and statistically signicant relationship in which people relied
more strongly on the risk assessment as its performance improved (p = 0.006); in pretrial, however,
Explanation, RA Prediction, and Feedback had a negative relationship in which people relied less
strongly on the risk assessment as its performance improved (p ≤ 0.04). In the six other treatments
across the two settings, participants did not dierentiate their reliance on the risk assessment based
on how it actually performed.

6Although all participants were presented with predictions from the same model, each participant was presented with a
dierent set of 40 predictions. As a result of this variation, each participant observed a dierent level of risk assessment
quality.
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5.3 Desideratum 3 (Fairness)
Desideratum 3 states that people should interact with the algorithm in ways that are unbiased with
regard to race, gender, and other sensitive attributes.

To assess whether this desideratum was satised, we analyzed if any “disparate interactions” [37]
emerged in the various treatments. Because Desideratum 3 concerns bias with respect to sensitive
attributes and the loans data did not contain any such attributes about applicants, we applied this
analysis only in the pretrial setting. Following prior work [37], we analyzed disparate interactions
along two framings: rst, comparing the risk assessment’s inuence on participants when making
predictions about black and white defendants, and second, comparing the participant deviations
from the risk assessment when making predictions about black and white defendants. In both
cases, we found that every treatment exhibited disparate interactions and that the Update treatment
yielded the smallest disparate interactions.

5.3.1 Influence of the risk assessment. For each treatment, we compared the inuence of the risk
assessment on predictions about black and white defendants (Equation 3). We broke down the
analysis based on whether the risk assessment’s prediction was greater or less than the average
Baseline participant prediction for that defendant (ri > bi and ri < bi , respectively).
In cases where ri > bi , the risk assessment exerted a larger inuence to increase risk on

predictions about black than white defendants in every treatment (Figure 3). These dierences
were statistically signicant in three of the ve treatments: RA Prediction (p = 0.001), Update
(p < 10−4), and Feedback (p = 0.02). The largest disparities of 0.38 occurred in Feedback and RA
Prediction; in the latter, for example, the inuence for black defendants was 0.50 (meaning that
participants equally weighed their own and the risk assessment’s judgments) and the inuence for
white defendants was 0.12 (meaning that participants only slightly considered the risk assessment’s
judgments). The smallest disparity of 0.07 occurred in Update. Thus, although the RA inuence
disparity> was positive in Update, the disparity was reduced by 81.5% compared to RA Prediction.
The inverse pattern emerged in cases where ri < bi : in every treatment, the risk assessment

exerted a greater inuence to reduce risk when participants were evaluating white defendants. The
discrepancies between black and white defendants were reduced, however, and were signicant
only in the Update treatment, which had a disparity of 0.05 (p = 0.02).

5.3.2 Deviation from the risk assessment. For each treatment, we compared the extent to which
participants deviated from the risk assessment when making predictions about black versus white
defendants (Equation 4). In every treatment, participants on average deviated positively (toward
higher risk) for black defendants and negatively (toward lower risk) for white defendants. Aside
from Update (p = 0.053), these deviation disparities were statistically signicant in every treatment
(p < 10−6). The largest gap in average deviations (of 4.1%) came in Feedback, where the average
deviation was +1.3% for black defendants and -2.8% for white defendants. The smallest disparity (of
0.6%) came in Update, where the average deviation was +0.4% for black defendants and -0.2% for
white defendants. Compared to RA Prediction, which had a disparity of 2.3%, Update reduced the
Deviation disparity by 73.9%.

6 DISCUSSION
This study explored the normative and empirical dimensions of algorithm-in-the-loop decision
making, with a focus on risk assessments in the criminal justice system and nancial lending. We
rst posited three desiderata as essential to facilitating accurate, reliable, and fair algorithm-in-the-
loop decision making. We then ran experiments to evaluate whether people met the conditions of
these principles when making decisions with the aid of a machine learning model. We studied how
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Fig. 3. The disparate interactions present in each treatment in the pretrial seing, measured by the disparities
in risk assessment influence (Equation 3) and in participant deviations (Equation 4) for black versus white
defendants. In both cases, values closer to 0 indicate lower levels of bias. The Update treatment yielded the
smallest disparate interactions along both metrics, reducing the disparities (compared to RA Prediction) by
81.5% and 73.9%, respectively.

people made predictions in two distinct settings under six conditions—including four that follow
proposed approaches for presenting risk assessments—and found that only the desideratum related
to accuracy was satised by any treatment. No matter how the risk assessment was presented,
participants could not determine their own or the model’s accuracy, failed to calibrate their use
of the model to the quality of its predictions, and exhibited disparate interactions when making
predictions.
These results call into question foundational assumptions about the ecacy and reliability of

algorithm-in-the-loop decision making. It is often assumed that, because risk assessments are
merely decision making aids, the people who make the nal decisions will provide an important
check on a model’s predictions [43, 50, 74]. For example, in State v. Loomis, the Wisconsin Supreme
Court mandated that COMPAS should be accompanied by a notice about the model’s limitations
and emphasized that sta and courts should “exercise discretion when assessing a COMPAS risk
score with respect to each individual defendant” [74]. But such behavior requires people to evaluate
the quality of predictions and to calibrate their decisions based on these evaluations—abilities that
our ndings indicate people do not reliably possess. That assumptions about human oversight
are so central to risk assessment advocacy and governance is particularly troubling given the
inability of algorithms to reason about novel or marginal cases [2]: people may make more accurate
predictions on average when informed by an algorithm, but they are unlikely to recognize and
discount any errors that arise. Even when people are making the nal decisions, using a risk

Proc. ACM Hum.-Comput. Interact., Vol. 3, No. CSCW, Article 50. Publication date: November 2019.



50:20 Ben Green and Yiling Chen

assessment may reduce the capacity for reexivity and adaptation within the decision making
process. These concerns are particularly salient given the persistence of disparate interactions
across all of our experimental treatments.
The rst step toward remedying these issues is to further develop criteria that should govern

algorithm-in-the-loop decision making. If society is to trust the widespread integration of machine
learning models into high-stakes decisions, it must be condent that the decision making processes
that emerge will be ethical and responsible. Rather than emphasizing only those values which
technology is capable of promoting (such as accuracy), society must evaluate technology according
to a full slate of normative and political considerations, paying particular attention to the technol-
ogy’s downstream implications [35, 36]. Despite providing initial steps in this direction, the three
desiderata proposed here are not comprehensive and may not even be of primary concern in certain
contexts. Our three desiderata do not capture broader considerations such as whether the context of
a decision is just and whether it is appropriate to incorporate algorithmic advice into that context at
all. Existing theories of justice must be more thoroughly adapted to algorithm-in-the-loop decision
making and to the contexts in which these decisions arise.
Another important step will be to develop a deeper science of human-algorithm interactions

for decision making. Although debates about risk assessments have centered on the statistical
properties of the models themselves [3, 21], we found that varying risk assessment presentation and
structure aected the accuracy of human decisions to an extent equivalent to altering the underlying
risk assessment accuracy by more than 4%. The relative performance of each treatment was similar
across two distinct domains, suggesting that our results may reect general patterns of human-
algorithm interactions. But while we were able to explain some of the dierences in treatment
performance, we lack a comprehensive understanding of how risk assessment presentation aected
people’s behaviors. Notably, we found several counterintuitive results that challenge assumptions
about how to improve human-algorithm interactions. Although it is commonly assumed that
providing explanations will improve people’s ability to understand and take advantage of an
algorithm’s advice [23, 24, 63], we found that explanations did not improve human performance,
a result that accords with prior work [61, 62]. We also found, counterintuitively, that providing
feedback to participants signicantly decreased participant accuracy (in one setting leading to
predictions that were no better than those made without the advice of a risk assessment at all) and
exacerbated disparate interactions.

More broadly, evaluations of algorithm-in-the-loop decision making should consider not just the
quality of decisions (the focus of this study) but also how working with an algorithm can change
one’s perceptions of the task itself. The presentation of models can shape people’s responses to the
predictions made, prompting people to focus on the predictive dimensions of a complex decision
and suggesting particular assumptions. For example, predictive policing systems have prompted
police to alter their focus while on patrol [6, 42] and are sometimes displayed in a manner that
could exacerbate a militaristic police mindset [36].
The presentation and structure of an algorithm could also diminish someone’s sense of moral

agency when making predictions. Prior work has found that using automated systems can generate
a “moral buer” that prompts people to feel less responsible and accountable for their actions [17].
For behavior within algorithm-in-the-loop settings to be reliable and accountable, it is essential
that human decision makers feel responsibility for their actions rather than deferring agency to
the computer. As a corollary, in the face of “moral crumple zones” that place undue responsibility
on the human operators of computer systems rather than on the creators of those systems [25], the
people developing algorithmic decision aids must feel responsibility and be accountable for how
their design choices aect the nal decision makers’ actions.
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With these considerations in mind, an important direction of future work will be to develop
design principles for algorithms—as well as for the social and political contexts in which they
are embedded—to promote reliable, fair, and accountable decision making. Given that only the
accuracy desideratum was satised even when various interventions were tested, a great deal
of work is clearly required to promote the full slate of desired behaviors. Such work requires a
fundamental shift in algorithmic practice that begins with expanding the goals of development
and evaluation to include considerations beyond model accuracy. Producing algorithms for use
in social contexts means not just designing technology, but designing sociotechnical systems in
which human-algorithm interactions, governance, and political discourse are all as central to the
outcomes as the model predictions themselves. A thorough understanding of how each of these
factors aects the impacts of algorithms is essential to building sociotechnical systems that can
reliably produce ethical outcomes.
A critical step along these lines will be to further study human-algorithm interactions in real-

world rather than experimental settings. A signicant limitation of this paper is that our ndings are
based on the behaviors of Mechanical Turk workers rather than judges or loan agents, meaning that
we cannot assume that the observed behaviors arise in practice. There are several indications that
our results accord with real-world outcomes, however: judges suer from many of same cognitive
illusions as other people [38], are skeptical about the benets of algorithms [10, 11], and exhibit
disparate interactions when using risk assessments [1, 16]. Continued research regarding the use
of risk assessments in practice (and the relationship between behaviors observed in experimental
versus natural settings) will provide vital evidence to inform ongoing debates about what role
algorithms can or should play in consequential decisions.
This study was further hindered by the limits of its methodology and scope. Our experiments

abstracted human decision making into a series of prediction tasks, thus potentially overstating the
importance of accuracy and removing many other important factors from consideration. In the
U.S. criminal justice system, for instance, decisions must satisfy due process and equal protection,
meaning that defendants must have the right to hear and challenge claims against them, that
rules based on accurate statistical generalizations are often rejected in favor of treating people
like individuals, and that decisions must be made without discriminatory intent. Because these
considerations were not captured by our experimental task or evaluation metrics, experiments such
as ours—by nature of how they are designed—fail to provide a holistic evaluation of risk assessments’
merits and aws. Thus, even as future work further develops principles and methods for ethical
algorithm-in-the-loop decision making, it is necessary to retain a focus on the broader questions of
justice that surround human-algorithm interactions and algorithmic policy interventions.
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