
          HARVARD UNIVERSITY 

Graduate School of Arts and Sciences 
 
 
 

 
 

DISSERTATION ACCEPTANCE CERTIFICATE 
 
 

The undersigned, appointed by the 
 

Harvard John A. Paulson School of Engineering and Applied Sciences 
have examined a dissertation entitled: 

 
“Risky Reforms: A Sociotechnical Analysis of Algorithms as Tools for Social Change” 

presented by: Ben Green 

candidate for the degree of Doctor of Philosophy and here by 
 

Signature    
Typed name: Professor Y. Chen 

 
Signature    
Typed name: Professor F. Doshi-Velez 

 
Signature    
Typed name: Professor M. Gray 

 
Signature:  
Typed name: Professor A. Papachristos 

 
 
 

August 25, 2020 

 
 

 
 

Mary Gray 



Risky Reforms: A Sociotechnical Analysis of
Algorithms as Tools for Social Change

a dissertation presented
by

Ben Green
to

The School of Engineering and Applied Sciences

in partial fulfillment of the requirements
for the degree of

Doctor of Philosophy
in the subject of

Applied Mathematics

Harvard University
Cambridge, Massachusetts

August 2020



©2020 – Ben Green
All rights reserved.



Thesis advisor: Professor Yiling Chen Ben Green

Risky Reforms: A Sociotechnical Analysis of Algorithms as Tools for
Social Change

Abstract

This thesis considers the relationship between efforts to address social problems using algorithms and the so-

cial impacts of these interventions. Despite widespread optimism about algorithms as tools to promote reform

and improve society, there is often little rigorous analysis regarding how algorithmic interventions will lead to

particular desired outcomes. In turn, many well-intentioned applications of algorithms have led to social harm.

In this thesis, I focus on the use of “risk assessments” in the U.S. criminal justice as a notable example of machine

learning algorithms being used as tools for social change. Treating these algorithmic interventions as sociotech-

nical and political reform efforts rather than primarily technical projects, I center my analyses of risk assessments

around their social and political consequences. In Part I (Interaction), I introduce a new “algorithm-in-the-loop”

framework for evaluating the impacts of algorithms in practice, using experiments to uncover unexpected be-

haviors that occur when people collaborate with risk assessments. In Part II (Risk and Response), I interrogate

typical conceptions of risk and how to respond to it, developing a novel machine learning method to analyze

structural factors of violence and to support non-punitive and public health-inspired violence prevention ef-

forts. In Part III (Reform), I place these technical studies in the broader context of social and political reform,

describing the limits of risk assessments as a tool for criminal justice reform and articulating a new mode of

practice—“algorithmic realism”—that synthesizes computer science, law, STS, and political theory in order to

equip computer scientists to work more rigorously in the service of social change. By expanding the scope

of questions asked of risk assessments, this dissertation sheds new light on how risk assessments represent a

“risky” strategy for achieving criminal justice reform. Through these analyses, I chart the beginnings of a more

interdisciplinary and rigorous approach to evaluating and developing algorithms as tools for social change.
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Chapter 1

Introduction

Following recent advances in the quality and accessibility of machine learning algorithms, the public sector in-

creasingly uses machine learning as a central tool to distribute resources and make important decisions [194].

Similarly, much of the work in computer science labs and technology companies is motivated by a desire to

improve society. Many computer scientists aim to “change the world” [378], leading to the development of algo-

rithms for use in courts [17], city governments [194], hospitals [468], schools [526], and other essential societal

institutions. A particularly common goal among algorithm developers is to contribute to the “social good,” with

countless such efforts among academic institutes, conferences, companies, and volunteer organizations [191].

Despite this optimism about the value of algorithms as tools to promote reform and improve society, there

is often little articulation or rigorous analysis of how algorithmic interventions will lead to particular desired

outcomes. Even as algorithms are hailed for their ability to improve society, they are predominantly evaluated

along traditional technical metrics such accuracy and efficiency. Thus, alongside computer science’s growing

interest in addressing social challenges has come a recognition—driven by affected communities and scholarship

in science, technology, and society (STS) and critical algorithm studies—that many well-intentioned applications
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of algorithms have led to harm. Algorithms can be biased [17], discriminatory [27], dehumanizing [365], and

violent [229, 373]. They can exclude people from receiving social services [154, 369], spread hateful ideas [421,

499], and facilitate government oppression of minorities [305, 353].

This gap between the intentions behind the development and use of algorithms and the social impacts of many

algorithms raises central questions at the heart of efforts to improve society: What is the relationship between

social interventions and the impacts of those interventions? How can social interventions robustly generate

their desired social impacts? Scholars across a wide range of fields have long noted that political reforms often

fail to achieve their desired goals and can have unintended adverse consequences [5, 109, 316, 354, 483]. Many

have also noted how technological innovations and applications can fail to achieve their desired goals and lead

to unexpected social harms [13, 194, 252, 441, 479, 512].

This thesis looks to the relationship between algorithmic interventions (efforts to use algorithms to address

social problems) and social impacts. I focus on the use of “risk assessments” in the U.S. criminal justice system

(particularly in courts, with some discussion of policing in Part II) as a notable example of machine learning

algorithms being used as a tool for social change. Treating these algorithmic interventions as sociotechnical and

political reform efforts rather than primarily technical projects, I center my development and analysis of risk

assessment algorithms around their social and political consequences. By “sociotechnical,” I refer to the ways

in which social actors and technological artifacts become intertwined as part of unified—rather than discrete—

systems (or networks) and the mode of analysis that analyzes technology in relation to these social actors [290,

469]. Within sociotechnical systems, “technologies can be assessed only in their relations to the sites of their

production and use” [469].

In Part I (Interaction), I introduce a new “algorithm-in-the-loop” framework for evaluating the impacts of

algorithms in practice, using experiments to uncover unexpected behaviors that occur when people collaborate

with risk assessments. In Part II (Risk and Response), I interrogate typical conceptions of risk and how to re-

spond to it, developing a novel machine learning method to analyze structural factors of violence and to support
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non-punitive and public health-inspired violence prevention efforts. In Part III (Reform), I place these technical

studies in the broader context of social and political reform, describing the limits of risk assessments as a tool for

criminal justice reform and articulating a new mode of practice—“algorithmic realism”—that synthesizes com-

puter science, law, STS, and political theory in order to equip computer scientists to work more rigorously in the

service of social change. By expanding the scope of questions asked of risk assessments, this dissertation sheds

new light on how risk assessments represent a “risky” strategy for achieving criminal justice reform. Through

this process, however, I chart the beginnings of a more interdisciplinary and rigorous approach to evaluating and

developing algorithms as tools for social change.

1.1 Criminal Justice Risk Assessments

Across the United States, many oft-opposed groups have united around risk assessments as a promising path

forward for adjudication in criminal courts: Democrats and Republicans [217], conservative states [255] and

liberal states [361], criminal defense organizations [406] and prosecutors [339]. In turn, risk assessments have

proliferated in recent years: in 2017, 25% of people in the U.S. lived in a jurisdiction using a pretrial risk assess-

ment, compared to just 10% four years prior [403]. A 2019 scan of 91 U.S. jurisdictions found that more than

two-thirds used a pretrial risk assessment [404].

Risk assessments are mechanisms for identifying potential risks, the likelihood of those risks manifesting, and

the consequences of those events [413]. Within the criminal justice system, risk assessments are most widely

used in the contexts of pretrial detention (to predict the likelihood that a criminal defendant will fail to appear in

court for trial and, in some jurisdictions, will commit a crime before trial) and sentencing and parole (to predict

the likelihood that a defendant or inmate will commit a crime in the future). Risk assessments are also used in

policing to predict places where crime is likely to occur and people likely to be the perpetrators or victims of

violence [241]. Although actuarial risk assessments have existed within the criminal justice system for several
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decades, today’s tools represent a new generation that incorporates a larger range of risk factors and is often

developed through more advanced statistical methods (such as machine learning) [46, 266].

The recent push toward adopting risk assessments is largely motivated by the criminal justice system’s current

crisis of legitimacy. Scholarship and activism have demonstrated the countless ways in which racism is baked into

the criminal justice system’s fundamental structure [10, 105, 228, 354, 462]. Through popular books about mass

incarceration [10], racial justice movements such as Black Lives Matter, and increased attention to the inequity

of policies such as cash bail [106], there is a growing consensus that the criminal justice system is rife with

discrimination. Even criminal justice system actors and defenders have acknowledged the need for change. In

2015, more than 130 police chiefs and prosecutors formed a new organization to combatmass incarceration [169];

the following year, the largest police organization in the U.S. apologized for policing’s “historical mistreatment of

communities of color” [246]. More recently, politicians (including former prosecutors) who formerly embraced

“tough on crime” policies have apologized for their actions and championed criminal justice reform [156, 183,

310].

Risk assessments are often hailed as an important tool for addressing some of the central issues in pretrial and

sentencing adjudication. The theory of change regarding the benefits of risk assessments is grounded in two key

assumptions. The first assumption is that risk assessments will mitigate judicial and policing biases by providing

“objective” decisions [115, 217, 257, 361, 366, 495].

The second assumption is that risk assessments will promote criminal justice reform. This is expected to occur

through objective risk assessments replacing discriminatory policies and reducing incarceration. For example,

Senators Kamala Harris and Rand Paul introduced the Pretrial Integrity and Safety Act of 2017, proposing to

replace money bail with risk assessments so that pretrial release would be based on risk rather than wealth and

so that pretrial release rates would increase [217]. Several states have implemented pretrial risk assessments with

these same goals [255, 361]. Many endorsements of evidence-based sentencing are similarly grounded in the

goal of reducing incarceration [346, 460]. Predictive policing systems are similarly adopted as a tool for policing
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reform [161].

Supporters of risk assessments draw a clear link between objectivity and reform. In its Statement of Principles,

Arnold Ventures (the organization behind the Public Safety Assessment (PSA), a pretrial risk assessment used in

nineteen states [293]) writes that the goal of its criminal justice reform efforts is to promote “a criminal justice

system that dramatically reduces the use of pretrial detention.” Developing the PSA was one of its “earliest

investments in pretrial reform,” under the belief that “[p]roviding judges with an objective means to consider

only relevant data may counterbalance some [human] biases and lead to fairer pretrial outcomes” [495]. Similarly,

the Attorney General of New Jersey described the state’s adoption of “an objective pretrial risk-assessment” as

“[o]ne of the most critical innovations undergirding the entire [statewide bail] reform initiative” [393].

1.2 Algorithmic Fairness

Given that a primary motivation behind risk assessments is to promote objective and unbiased decision-making,

significant debate has focused on how to measure and ensure that risk assessments do not discriminate against

Blacks. The satisfaction of statistical metrics for fairness has become a central component of evaluating the

objectivity of risk assessments.

InMay 2016, the investigate journalism outlet ProPublica released a report exposing the racial bias in computer

algorithms known that “risk assessments” that predict future criminality [17]. ProPublica obtained the risk scores

of more than 7,000 pretrial defendants in Broward County, Florida in 2013 and 2014, predictions which had been

generated by an algorithm known as COMPAS (Correctional Offender Management Profiling for Alternative

Sanctions) created by the company Northpointe (since renamed as Equivant). The team’s analysis of these

predictions found that the algorithm is “biased against blacks.” Blacks were disproportionately mislabeled as

“high risk” (i.e., were subject to false positive predictions) and whites were disproportionately mislabeled as “low

risk” (i.e., were subject to false negative predictions). For instance, 45% Blacks who did not recidivate over the
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two-year evaluation period were labeled “high risk,” compared to just 23% of whites who did not recidivate

[289].

ProPublica was not the first to suggest that algorithms could be biased. Scholarship and policy across a range

of areas had long considered how algorithms, software, and quantitative assessments could discriminate [172,

236, 239, 274, 370]. Such concerns gained particular traction as big data and algorithms become more pervasive

in the criminal justice system and many aspects of daily life [27, 28, 144, 364, 455, 473]. In 2014, Attorney

General Eric Holder expressed concern that criminal justice risk assessments “may exacerbate unwarranted and

unjust disparities” [232].

Although some responded to ProPublica’s article with outrage about racist algorithms making criminal justice

decisions [134, 377, 456], many critiqued ProPublica’s conclusion. Northpointe responded that ProPublica “did

not present any valid evidence that the risk scales are biased against blacks” [130]. In particular, Northpointe

argued that ProPublica failed to account for the different recidivism rates between Blacks and whites and mis-

takenly focused on false positive and false negative rates as evidence of racial bias. Using the “predictive parity”

measure that they assert is the proper evaluation metric, Northpointe demonstrated that COMPAS’s predictions

of high and low risk were both equally accurate across race and therefore unbiased. Northpointe’s response was

not simply a corporation shamelessly defending itself against public scrutiny. Many independent researchers sim-

ilarly rejected claims that COMPAS is racially biased on the grounds that, at each level of predicted risk, Blacks

and whites were approximately equally likely to recidivate [100, 166, 185].

Several groups of researchers soon showed that the conflict between these different notions of bias within

the COMPAS algorithm were mathematically inevitable [16, 82, 278]. These results, known as the “impossibility

of fairness,” concern two categories of statistical metrics for fairness.

The first category involves metrics emphasizing equal treatment. Although there are subtle differences be-

tween these metrics, they all express a similar logic that similar people should be treated similarly, with similarity

based on the algorithm’s predictions. These metrics include:
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• Calibration: predictions of risk should reflect the same underlying level of risk across groups [82, 278].

• Predictive parity: outcome rates among people labeled “high risk” should be the same across groups

[130].

• Threshold rules: decisions should be based on a single risk threshold for all groups [98].

The second category involves metrics emphasizing the impacts of prediction errors. These include:

• Error rate balance: false positive and false negative rates should be equal across groups [82].

• Balance for the positive/negative class: the average score assigned to positive/negative predictions should

be the same across groups [278].

Given these two sets of metrics, the impossibility of fairness shows that if two groups have different rates of

an outcome, then it is impossible for predictions about those groups to both be calibrated and have balanced

errors [82, 278]. Both types of fairness measures can be simultaneously achieved only in two unlikely scenarios:

when the algorithm is able to perfectly predict each person’s outcome or when the two groups have identical

outcome rates [278]. In the context of risk assessments, this means that, given higher crime rates among Black

defendants than white defendants, it is impossible for a risk assessment to make calibrated predictions of risk

without having a higher false positive rate and lower false negative rate for Black defendants.

1.3 Outline

Here I provide a brief outline for the dissertation, with references to the individual works from which each

chapter is adapted.

Part I (Interaction) presents three studies regarding the role of human-algorithm interactions in the implemen-

tation of algorithms. Although significant debate has centered on the statistical properties of risk assessments,

little research has considered how these algorithms affect the people who actually make decisions. In practice,
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risk assessments do not make decisions—they inform judges, who are the final arbiters. Chapter 2 introduces

a new framework—“algorithm-in-the-loop” decision making—that emphasizes the human’s decisions as the

central output of importance when risk assessments are used [196, 197, 198]. Chapter 3 uncovers racial biases

in human responses to risk assessments (what I call “disparate interactions”) [196]. Chapter 4 studies the fail-

ure of algorithm-in-the-loop decision making to satisfy core tenets of just decision making [197]. Chapter 5

demonstrates how using algorithmic risk assessments can increase risk aversion as a decision-making factor in

government contexts [198].

Part II (Risk and Response) reframes risk prediction around social structures and social services. Chapter 6

describes the rise of “predictive policing” algorithms and the need to center policy reforms rather than simply

make existing practices more efficient [194]. Chapter 7 introduces a novel machine learning method to study the

spread of gunshot victimization through social networks and to support non-punitive and public health-inspired

violence prevention efforts [199].

Part III (Reform) considers the implications of these technical studies for projects of social reform. Chapter 8

demonstrates the limits of risk assessments’ supposed objectivity and argues instead that risk assessments are

likely to legitimize rather than combat the criminal justice system’s carceral logics and policies [195]. Chapter 9

proposes a new mode of practice—“algorithmic realism” that can equip computer scientists to engage more

rigorously with the sociality of their work and to develop interventions that account for rather than reproduce

historical injustice [201]. Chapter 10 briefly concludes by outlining some salient areas of future work related to

algorithms and social change.
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Part I

Interaction
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Chapter 2

AnAlgorithm-in-the-LoopApproach toDecision-

Making

2.1 Introduction

People and institutions increasingly make important decisions with the aid of risk assessments. Applications of

algorithmic risk assessments include directing police and social services to individuals most at risk of being in-

volved in gun violence [434], informing pretrial and sentencing decisions with a criminal defendant’s likelihood

to recidivate [17, 361], targeting public health inspections based on the risk of illness [194, 397], and predict-

ing which children are most likely to be abused or neglected [154]. Applications of risk assessments in other

contexts include banks using models to manage credit risk [450]. All of these settings involve machine learning

models that inform people who are tasked with making decisions. This trend represents a fundamental shift in

decision-making: where in the past decision-making was a social enterprise, decision-making today has become

a sociotechnical affair.
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This shift in decision-making is particularly notable with respect to high-stakes settings such as courts within

the U.S. criminal justice system. Across the United States, courts are increasingly using risk assessments to

estimate the likelihood that criminal defendants will engage in unlawful behavior in the future. These tools are

being deployed during several stages of criminal justice adjudication, including at bail hearings (to predict the risk

that the defendant, if released, will be rearrested before trial or not appear for trial) and at sentencing (to predict

the risk that the defendant will recidivate). Because risk assessments rely on data and a standardized process,

many proponents believe that they can mitigate judicial biases and make “objective” decisions about defendants

[217, 361, 115]. Risk assessments have therefore gained widespread support as a tool to reduce incarceration

rates and spur criminal justice reform [406, 217, 361].

Yet many are concerned that risk assessments make biased decisions due to the historical discrimination

embedded in training data. For example, the widely-used COMPAS risk assessment tool wrongly labels Black

defendants as future criminals at twice the rate it does for white defendants [17]. Prompted by these concerns,

machine learning researchers have developed a rapidly-growing body of technical work focused on topics such

as characterizing the incompatibility of different fairness metrics [278, 82] and developing new algorithms to

reduce bias [158, 215].

Despite these efforts, current research into fair machine learning fails to capture an essential aspect of how

risk assessments impact decision-making in courts: their influence on judges. After all, risk assessments do not

make definitive decisions about pretrial release and sentencing—they merely aid judges, who must decide whom

to release before trial and how to sentence defendants after trial. In other words, algorithmic outputs act as

decision-making aids rather than final arbiters. Thus, whether a risk assessment itself is accurate and fair is of

only indirect concern—the primary considerations are how it affects decision-making processes and whether

it makes judges more accurate and fair. No matter how well we characterize the technical specifications of risk

assessments, we will not fully understand their impacts unless we also study how judges interpret and use them.

The chain from algorithm to person to decision has become vitally important as algorithms inform increasing
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numbers of high-stakes decisions. To improve our understanding of these contexts, I introduce an “algorithm-

in-the-loop” framework that places algorithms in a sociotechnical context—thus focusing attention on human-

algorithm interactions to improve human decisions rather than focusing on the algorithm to improve its decisions.

Rigorous studies of algorithm-in-the-loop systems are necessary to inform the design and implementation of

algorithmic decision-making aids being deployed in courts and beyond.

After situating the algorithm-in-the-loop framework within the literature, I describemy experimental approach

to evaluating algorithm-in-the-loop systems. The following three chapters describe a series of studies using this

approach. The results of these studies highlight the urgent need to more rigorously study the impacts of risk

assessments, focusing on the full set of mechanisms through which potential outcomes come to pass. Risk

assessments have the potential to improve decision-making, but can also lead to unintended outcomes as they

are integrated into human decision-making processes and broader political contexts; evaluations must therefore

be grounded in rigorous sociotechnical analyses of the downstream impacts. As the following studies indicate,

one essential component that shapes these outcomes is the quality and reliability of human-algorithm interactions.

Continued research into how people should and do collaborate with machine learning models is necessary to

inform the design, implementation, and governance of algorithmic decision-making aids being deployed across

society.

2.2 Related Work

A core component of integrating a technical system into social contexts is ensuring that people recognize when to

rely on the tool and when to discount it. As technology is embedded into critical human decisions, the stakes of

human trust and reliance on technology rise, such that “poor partnerships between people and automation will

become increasingly costly and catastrophic” [295]. Recent breakdowns in the human-automation partnership

in self-driving cars and airplane autopilot have led to disaster [221, 40]. In many contexts, designing effective
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human-machine collaborations hinges as much (if not more) on presenting guidance that is tailored to human

trust and understanding as it does on providing the technically optimal advice [295, 150].

Significant research in human-computer interaction has considered how to develop systems that effectively

integrate human and computer intelligence [262, 237]. In the context of algorithm-assisted human decision-

making, prior research has explored topics such as what interactions can facilitate the development of machine

learning models [285, 155, 74], how to improve human performance with an algorithm’s assistance [89, 287], and

the ways in which laypeople perceive algorithmic decisions [296, 39, 152]. Research related to human-algorithm

interactions when making predictions can be summarized into two broad categories of findings.

2.2.1 People struggle to interpret and effectively use algorithmswhenmaking

decisions

The phenomenon of “automation bias” suggests that automated tools influence human decisions in significant,

and often detrimental, ways. Two types of errors are particularly common: omission errors, in which people do

not recognize when automated systems err, and commission errors, in which people follow automated systems

without considering contradictory information [350]. Heavy reliance on automated systems can alter people’s

relationship to a task by creating a “moral buffer” between their decisions and the impacts of those decisions [112].

Thus, although “[a]utomated decision support tools are designed to improve decision effectiveness and reduce

human error, […] they can cause operators to relinquish a sense of responsibility and subsequently accountability

because of a perception that the automation is in charge” [112].

Several experimental studies have uncovered important issues that arise when people use algorithms to inform

their decision-making. People often discount algorithmic recommendations, preferring to rely on their own or

other people’s judgment and exhibiting less tolerance for errors made by algorithms than errors made by other

people [520, 302, 131]. This may be due in part to the fact that people struggle to evaluate their own and

the algorithm’s performance [287]. Although people appear in some contexts to follow correct predictions
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more than incorrect ones [287], other studies suggest that people are unable to distinguish between reliable and

unreliable predictions [186], to deviate correctly from algorithmic forecasts [132], or to detect algorithmic errors

[400]. Moreover, people have been shown to be influenced by irrelevant information, to rely on algorithms

that are described as having low accuracy, and to trust algorithms that are described as accurate but actually

present random information [287, 459, 151]. People with more expertise are less willing than laypeople to take

advice from actuarial or algorithmic sources [309, 247, 334] And despite widespread calls for explanations and

interpretable models, recent studies have found that simple models do not lead to better human performance

than Black box models [400] and that varying algorithmic explanations does not affect human accuracy [357].

2.2.2 People often use algorithms in unexpected and biased ways

Previous research suggests that information presumed to help people make fairer decisions can fail to do so

because it filters through people’s preexisting biases. For example, “ban-the-box” policies (which are intended

to promote racial equity in hiring by preventing employers from asking job applicants whether they have a

criminal record) actually increase racial discrimination by allowing employers to rely on stereotypes and thereby

overestimate how many Black applicants have criminal records [5, 135]. Similarly, people’s interpretations of

police-worn body camera footage are significantly influenced by their prior attitudes about police [458].

A particular danger of breakdowns in human-algorithm collaborations is that the application of an algorithm

will lead to unintended behaviors and decisions. Ethnographic studies have documented how the uses of algo-

rithms in practice can differ significantly from the planned and proclaimed uses, with algorithms often being

ignored or resisted by those charged with using them [84, 54]. In other cases, the application of algorithms

has prompted people to alter their behavior, becoming overly fixated on the algorithm’s advice or focusing on

different goals [45, 238].

Pretrial risk assessments represent a notable example of algorithms that are highly indeterminate and often do

not generate the intended or expected results. Studies have shown that judges harbor implicit biases and that racial
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disparities in incarceration rates are due in part to differential judicial decisions across race [409, 2]. In Florida, for

example, white judges give harsher sentences to Black defendants than white ones who have committed the same

crime and received the same score from the formula the state uses to set criminal punishments [428]. Although

risk assessment algorithms are typically adopted with the explicit goal of reducing detention rates, in many cases

they have had only negligible impacts because judges ignore the majority of recommendations for release. Risk

assessments used in Kentucky and Virginia have thus far failed to produce significant and lasting increases in

pretrial release, as judges often overrode the risk assessment when it recommended release and reduced their

reliance on the risk assessment over time [464, 465]. Similar results have been found in Cook County, Illinois

[319] and in Santa Cruz and Alameda County, California [503].

There is also evidence that people’s interactions with risk assessments are fraught with racial biases. Simi-

larly, analyses have observed that judges in Broward County, Florida penalized Black defendants more harshly

than white defendants for crossing into higher risk categories [107] and that judicial use of a risk assessment in

Kentucky increased racial disparities in pretrial outcomes [8].

2.3 The Algorithm-in-the-Loop Framework

As computational systems permeate everyday life and inform critical decisions, it is of paramount importance

to study how algorithmic predictions impact human decision-making across a broad range of contexts. Risk as-

sessments are just one of an emerging group of algorithms that are intended to inform people making decisions

(other examples include predictions to help companies hire job applicants and to help doctors diagnose patients).

Yet despite robust research into the technical properties of these algorithms, we have a limited understanding

of their sociotechnical properties: most notably, whether and how they actually improve decision-making. To

answer these questions, it is necessary to study algorithms following the notion of “technologies as social prac-

tice,” which is grounded in the understanding that technologies “are constituted through and inseparable from
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the specifically situated practices of their use” [469].

A natural body of work from which to draw inspiration in studying human-algorithm collaborations is human-

in-the-loop (HITL) systems. In settings such as social computing and active learning, computational systems

rely on human labor (such as labeling photos and correcting errors) to overcome limitations and improve their

performance. But where HITL processes privilege models and algorithms, utilizing people where necessary to

improve computational performance, settings like pretrial release operate in reverse, using algorithms to improve

human decisions.

This distinction suggests the need for an alternative framework: algorithm-in-the-loop (AITL) systems (Fig-

ure 2.1).1 Instead of improving computation by using humans to handle algorithmic blind spots (such as an-

alyzing unstructured data), AITL systems improve human decisions by using computation to handle cognitive

blind spots (such as finding patterns in large, complex datasets). This framework centers human-algorithm in-

teractions as the locus of study and prioritizes the human’s decision over the algorithm’s as the most important

outcome.

An algorithm-in-the-loop perspective can inform essential sociotechnical research into algorithms. Recent

work related to interpretability provides one important direction where progress is already being made [400, 357,

136]. Future analysis should focus on how to develop and present algorithms so that people can most effectively

and fairly incorporate them into their deliberative processes, with particular attention to improving evaluations

of algorithm quality and reducing disparate interactions. This may involve altering the algorithm in unintuitive

ways: previous research suggests that in certain situations a seemingly suboptimal algorithm actually leads to

better outcomes when provided to people as advice [150].

It will also be important to study the efficacy of different mechanisms for combining human and algorithmic

judgment across a variety of contexts. Most algorithm-in-the-loop settings involve simply presenting an algo-

rithmic output to a human decision-maker, relying on the person to interpret and incorporate that information.

1Although previous studies have used the phrase “algorithm-in-the-loop,” they have defined it in the context of simula-
tion and modeling rather than in relation to human-in-the-loop computations and human-algorithm interactions [517, 433].
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Figure 2.1: A visual representation of the distinction between HITL and AITL settings. While HITL settings center algo-

rithmswith humans providing aid, AITL settings center humans with algorithms providing aid.

Yet research within human-computer interaction and crowdsourcing suggests that alternative approaches could

lead to a better synthesis of human and computer intelligence [89, 237, 261, 262]. Which mechanisms are most

effective (and desirable from an ethical and procedural standpoint) will likely vary depending on the situation.

Finally, given that automation can induce a moral buffer [112], it is necessary to study how using algorithms

affects people’s sense of responsibility for their decisions. Given the all-too-common expressions from engineers

that they do not bear responsibility for the social impacts of their technologies [191], the potential for automation

bias raises the unsettling specter of situations in which both the engineers developing algorithms and the people

using them believe the other to be primarily responsible for the social outcomes. It is of vital importance to

study whether algorithms create a moral buffer and to find ways to avoid such scenarios.

The algorithm-in-the-loop framework and the studies that follow demonstrate the importance of an exper-

imental and diagnostic approach to studying the impacts of risk assessments on government decision-making.

Given evidence of algorithms producing unexpected impacts in practice [55, 466, 464], there is an urgent need to
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uncover implementation issues before these algorithms are used to shape life-changing decisions. Experimental

studies with laypeople present one promising approach for gaining this preliminary diagnostic knowledge about

how algorithms are likely to affect human decisions in practice. Although the gold standard is empirical data

on how expert decision-makers are influenced by risk assessments in practice, a controlled experimental setup

enables insights that would be difficult to obtain in real-world settings and numerous experimental studies have

observed behaviors among judges that resemble those of laypeople [207, 410]. Knowledge gained through such

experiments can inform the development, implementation, and governance of algorithms in real-world settings

and prevent the implementation of technical systems whose social impacts are untested.

2.4 Experimental Approach

Our study progressed in two stages. The first stage involved developing risk assessments for pretrial detention

and financial lending. The second stage consisted of running experiments on Amazon Mechanical Turk to

evaluate how people interact with these risk assessments when making predictions and decisions. The full study

was reviewed and approved by the Harvard University Institutional Review Board and the National Archive of

Criminal Justice Data.

2.4.1 Description of Settings

The studies described in the following chapters focused on two settings: pretrial release in the criminal justice

system and financial lending from banks and the government. All three studies included the pretrial setting. The

second study included a version of the lending setting focused on generic loans provided by a bank and the third

study included a version of the lending setting focused on government home improvement loans.
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Pretrial Release

When someone is arrested, courts can either hold that person (a “criminal defendant”) in jail until their trial

or release them with a mandate to return for their trial (many people are also released under conditions such

as paying a cash bond or being subject to electronic monitoring). Among other considerations, courts aim to

ensure that defendants will return to court for trial and will not commit any crimes if released. Jurisdictions

across the United States have therefore turned to risk assessments as a tool to make more accurate predictions

of risk: specifically, the likelihood that a defendant, if released, would fail to return to court for their trial or

would commit any crimes. The higher a defendant’s risk, the more likely that a court is to detain that person

until their trial. Pretrial detention is associated with a range of negative outcomes for the subject that include

longer prison sentences, sexual abuse, and limited employment opportunities (see Chapter 8). Pretrial hearings

are typically completed quickly, often within a matter of minutes [23]. Although pretrial decisions depend in part

on the goal of ensuring that defendants return to court for trial without threatening public safety, they are also

made with an interest in also protecting the liberty of defendants, ensuring that defendants are able to mount

a proper defense, and reducing the hardship to defendants and their families [12]. Here, the “subject” is the

criminal defendant and the “negative decision” is the decision to detain the defendant before trial (rather than

release them).

Financial Loans

When someone applies for a financial loan, it is common for the potential lender to assess the risk that the

borrower will fail to pay back the money (known as “defaulting” on the loan). This is often done using risk

assessments that make predictions about the likelihood of loan default. The higher the risk that someone will

default on the loan, the less likely the lender is to provide money to that person. Here, the “subject” is the

loan applicant and the “negative decision” is the decision to reject the loan application (rather than approve the

application).
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A common type of loan provided by the U.S. government is home improvement loans (e.g., to rehabilitate a

home or to make a home energy-efficient). In order to support low-income applicants who are unable to obtain

affordable loans from banks, the government provides many types of home improvement loans [127]. These

loans are motivated by a desire to promote equity, economic development, and community stability. Although

there are no known cases of governments using risk assessments when giving out home improvement loans, this

setting is akin to other government applications of risk assessments to determine whom should receive resources

such as public benefits and housing [154, 418].

2.4.2 Data and Risk Assessments

We began our studies by creating risk assessments for pretrial detention and financial lending. In both settings,

we used a dataset of historical cases to develop a risk assessment in the form of a machine learning classifier that

predicted the probability of cases resulting in adverse outcomes. Our goal in this stage was not to develop optimal

risk assessments, but to develop risk assessments that resemble those used in practice and that could be presented

to participants during the Mechanical Turk experiments. The primary benchmark for the algorithms was that

they make predictions more accurately than humans; given that that algorithms are more accurate than humans

across a wide variety of tasks, this benchmark was essential for creating a realistic experimental environment.

Pretrial Data and Risk Assessment

To create our pretrial risk assessment, we used the dataset “State Court Processing Statistics, 1990-2009: Felony

Defendants in Large Urban Counties,” which was collected by the U.S. Department of Justice [488]. The dataset

contains court processing information pertaining to 151,461 felony cases that were filed during the month ofMay

in even years from 1990-2006 and in 2009 in 40 of the 75 most populous counties in the United States. The data

includes information about each case that includes the arrest charges, the defendant’s demographic characteristics

and criminal history, and the outcomes of the case related to pretrial release (whether the defendant was released
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before trial and, if so, whether they were rearrested before trial or failed to appear in court for trial).

We first cleaned the dataset to prepare it for use developing a risk assessment. We cleaned the dataset to

remove incomplete entries and restricted our analysis to defendants who were at least 18 years old, whose race

was recorded as either Black or white. In order to have ground truth data about whether a defendant actually

was rearrested before trial or failed to appear for trial, we also restricted our analysis to defendants who were

released before trial.

This yielded a dataset of 47,141 defendants (Table 2.1). The defendants were primarily male (76.7%) and

Black (55.7%), with an average age of 30.8 years. Among these defendants (all of whom were released before

trial), 15.0% were rearrested before trial, 20.3% failed to appear for trial, and 29.8% exhibited at least one of

these outcomes (which we defined as violating the terms of pretrial release).

All
N=47,141

Black
N=26,246

White
N=20,895

Background
Male 76.7% 77.3% 75.5%
Black 55.7% 100.0% 0.0%
Mean age at arrest 30.8 30.1 31.8
Drug crime 36.9% 39.2% 34.0%
Property crime 32.7% 30.7% 35.3%
Violent crime 20.4% 20.9% 19.8%
Public order crime 10.0% 9.3% 10.8%
Has prior arrests? 63.4% 68.4% 57.0%
Mean number of prior arrests 3.8 4.3 3.1
Has prior convictions? 46.5% 51.2% 40.7%
Mean number of prior convictions 1.9 2.2 1.6
Has prior failure to appear? 25.1% 28.8 20.4%

Outcomes
Rearrest 15.0% 16.9% 12.6%
Failure to appear 20.3% 22.6% 17.5%
Violation 29.8% 33.1% 25.6%

Table 2.1: Summary statistics for all of the defendants who were released before trial, broken down by defendant race.

A violationmeans that the defendant was rearrested before trial, failed to appear for trial, or both.

We then used this data to train machine learning classifiers (i.e., our risk assessments) to predict the probability
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that defendants would violate pretrial release (i.e., which defendants would be rearrested before trial or fail to

appear in court for trial). We used the same method but generated new risk assessments for each study. We

trained the models using gradient boosted decision trees [173] with the xgboost implementation in R [79]. The

classifiers incorporated five features about each defendant: age, offense type, number of prior arrests, whether

that person has any prior failures to appear, and number of prior convictions. Despite knowing the race and

gender of defendants, we excluded these attributes from the models to match common practice among risk

assessment developers [494]. Because our experiment participants would be predicting risk in increments of

10%, we rounded each risk assessment prediction to the nearest 10%.

The models achieved AUCs between 0.66-0.67, This indicates comparable accuracy to COMPAS [289, 243],

the Public Safety Assessment [123], and other risk assessments [125]. According to a recent meta-analysis of

risk assessments, our models have “Good” predictive validity [126]. We also evaluated the risk assessments for

fairness and found that they are well calibrated. Given these evaluations, our pretrial risk assessments resemble

those used within U.S. courts.

We selected from a sample of 300-500 defendants whose profiles would be shown to participants during the

Mechanical Turk experiments. To protect defendant privacy, we could present to Turk participants information

about only those defendants whose displayed attributes were shared with at least two other defendants in the full

dataset. Although this restriction meant that we could not select a uniform random sample from the validation

set, we found in practice that sampling from the validation set with weights based on each defendant’s risk score

yielded sample populations that resembled the full set of released defendants across most dimensions.

Financial Loans Data and Risk Assessment

To create our loans risk assessment, we used a dataset of loans from the peer-to-peer lending company Lending

Club, which posts anonymized loan data on its website. The data contains records about all 2,004,091 loans that

were issued between 2007 and 2018. Each record includes information such as the purpose of the loan; the loan
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applicant’s job, annual income, and approximate credit score; the loan amount and interest rate; and whether the

loan was paid off. The data includes the first three digits each borrower’s zip code but does not include further

demographic information about loan applicants such as their age, race, or gender.

We cleaned the dataset to remove incomplete entries and classified credit scores into one of five categories

(Poor, Fair, Good, Very Good, and Exceptional) defined by FICO [355]. We also limited the data to loans that

have been either fully paid or defaulted on (although the data represents these loans as being “charged off,”

which is more extreme than defaulting on a loan, we refer to charged off loans as being defaulted on because the

latter is the more commonly used and understood term).

As above, we used this data to train a risk assessment that could predict the probability that each loan would

be defaulted on. Using cross-validation to find parameters and evaluate the models, we trained the classifier

using gradient boosted decision trees [173] with the xgboost implementation in R [79]. Our model considered

seven factors about each loan: the applicant’s annual income, credit score category, and home ownership, as well

as the loan’s value, interest rate, monthly installment, and term of repayment (either 36 or 60 months). These

models attained AUCs between 0.69-0.71, is similar to the performance of other loan default risk assessments

that have been developed [493].

We selected uniform random samples of 300 loans that would be presented to the participants in each of our

Mechanical Turk experiments. Unlike in the pretrial setting, there were no restrictions on which applicants we

could present to participants.

2.4.3 Experiment Setup

In the second stage of each study, we conducted behavioral experiments on Amazon Mechanical Turk—a widely

used online platform for human subjects research [59, 97]—to evaluate how the presentation of a risk assessment

affects people’s predictions and decisions.

The first study only included the loans setting. For the second and third studies, participants were sorted
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into either the pretrial or loans setting and saw information only pertinent to that setting for the duration of the

experiment. Participants were presented with a description of their setting in the tutorial. These descriptions

explained the context of each setting, focusing on the key decision in each: for pretrial, whether to release

or detain a criminal defendant before trial; for loans, whether to approve or reject a loan application. These

descriptions also provided a brief discussion of the considerations that factor into these decisions: for pretrial,

preventing flight risk and crime, but also ensuring the freedom of defendants who have not been proven guilty

and preventing the harmful consequences of pretrial detention (such as losing one’s job); for loans, preventing

defaults but also enabling low-income homeowners to access resources, supporting economic development, and

promoting neighborhood stability.

Each trial consisted of a consent page, a tutorial describing the task, an intro survey (to obtain demographic

information and other participant attributes), the primary experimental task comprising a series of decisions or

predictions, and an exit survey (to obtain participant beliefs and reflections on the task). The intro and exit

surveys both included a simple question designed to ensure that participants were paying attention. We also

included a comprehension test with several multiple-choice questions about the experiment at the end of the

tutorial. Participants were not permitted to enter the study until they correctly answered all of the questions in

the comprehension test. We restricted the task to Mechanical Turk workers inside the United States who had

an historical acceptance rate of at least 75%. Turk workers were not allowed to participate in the experiment

multiple times.

In both settings, participants were presented with narrative profiles about a random sample of subjects drawn

from the 300- or 500-person populations drawn from the datasets of defendants and loan applicants. Profiles in

the crime setting included the five features that the risk assessment incorporated as well as the race and gender

of each defendant (we included these latter two features in the profiles despite not including them in the risk

assessment because judges are exposed to these attributes in practice). Profiles in the loans setting included the

same seven features that were included in the model. So that participants could look up background information
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and the definitions of key terms when evaluating subjects, the information that had been presented during the

tutorial (the description of the task and a glossary of key terms) was visible beneath these profiles. We used

the same set of defendants and applicants for all treatments within a given experiment, allowing us to directly

measure the impact of each treatment on the predictions and decisions made about each subject.

The primary research question of the study was to determine the effect of presenting risk assessment predic-

tions about each defendant or applicant on the decisions made by participants, and in particular to determine

whether presenting the risk assessment causes participants to weigh “risk” as a more salient factor in their deci-

sions. Half of participants were therefore presented with the prediction made by the risk assessment about each

subject, in addition to the narrative profiles about each subject, which were presented to every participant (for

participants who would be shown the risk assessment, we included a description of the risk assessment in the

tutorial and a question about the risk assessment in the comprehension test at the end of the tutorial). In other

words, the control group was participants making decisions without the risk assessment and the treatment group was participants

making decisions with the risk assessment.

The primary task for participants was to make predictions of risk for each defendant or applicant, on a scale

from 0% to 100% in intervals of 10%. Participants in the pretrial setting were required to estimate the likelihood

that criminal defendants will be arrested before trial or fail to appear in court for trial. Participants in the loans

setting were required to estimate the likelihood that a loan applicant will default on their loan. In the first two

studies, participants were asked to make only predictions; the third study had participants make both predictions

and decisions.

All participants were paid a base sum for completing the study ($2 in the first two experiments, $3 in the

third experiment). Participants making predictions also received an additional reward based on the accuracy of

their predictions ($2 in the first two experiments, $1 in the third experiment). We allocated rewards following

an inverted Brier score function: score = 1 − (prediction− outcome)2, where prediction ∈ {0, 0.1, . . . , 1} and

outcome ∈ {0, 1} (because the sample populations were restricted to defendants who were released before trial
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and loans that were granted, we have ground truth data about the binary outcome of each case). This inverted

Brier score is bounded between 0 (worst possible performance) and 1 (best possible performance) and measures

the accuracy of predictions about a binary outcome. We mapped the Brier score for each prediction to a payment

such that perfect accuracy on all 40 predictions would yield the maximum bonus for that experiment. Because

the Brier score is a proper score function [180], participants were incentivized to report their true estimates of

risk. We articulated this to prediction-making participants during the tutorial and included a question about the

reward structure in the comprehension test to ensure that they understood. We also measured false positive rates

(using a threshold of 50%).

2.5 Limitations

A significant limitation of the experiments presented here is that our findings are based on the behaviors of

Mechanical Turk workers rather than judges or loan agents, meaning that we cannot assume that the observed

behaviors arise in practice. There are surely important divergences between how laypeople and experts respond

to algorithms, particularly as it relates to trust and professional identity [55]. There are indications that our

results accord with real-world outcomes, however: judges suffer from many of same cognitive illusions as other

people [207], are skeptical about the benefits of algorithms [84, 77], and exhibit disparate interactions when

using risk assessments [8, 107]. Indeed, many of the results presented in the following chapters align closely

with behaviors and outcomes that have been observed in empirical studies of judges using risk assessments

Continued research regarding the use of risk assessments in practice (and the relationship between behaviors

observed in experimental versus natural settings) will provide vital evidence to inform ongoing debates about

what role algorithms can or should play in consequential decisions.

Our studies also fail to capture the level of racial priming that could influence judges’ use of risk assessments.

While our experiments tell participants that a defendant is Black or white, a judge would also see the defendant’s
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name and physical appearance. Studies have shown that employers discriminate based on racially-indicative

names [37] and that judges are harsher toward defendants with darker skin and more Afrocentric features [145,

272]. Thus, it is possible that the “disparate interactions” we observe in our experiments could be heightened in

the practice, where race is more salient. Future research should study how people respond to risk assessments

as racial priming increases.

The short length of each trial (25 predictions over approximately 20 minutes) means that we could not capture

how the relationships between people and risk assessments evolve over extended periods of time. This is an

important factor to consider when deploying algorithmic systems, especially given research demonstrating that

the changes instigated by risk assessments are short-lived [464]. The immediate impacts of introducing algorithms

into decision-making processes may not indicate the long-term implications of doing so.

A key aspect of future work will be to study algorithm-in-the-loop decision-making in real-world rather than

experimental contexts. Mechanical Turk experiments are no substitute for in situ evaluations. However, experi-

ments such as these provide an effective tool for diagnosing the types of human-algorithm interactions that could

arise in practice. Issues identified in experiments can inform the design and evaluation of real-world systems in

order to prevent breakdowns when the stakes are high.
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Chapter 3

Disparate Interactions: An Algorithm-in-the-

LoopAnalysis of Fairness inRiskAssessments

3.1 Introduction

This study sheds new light on how risk assessments influence human decisions in the context of pretrial ad-

judication. We ran experiments using Amazon Mechanical Turk to study how people make predictions about

risk, both with and without the aid of a risk assessment. We focus on pretrial release, which in many respects

resembles a typical prediction problem.1 By studying behavior in this controlled environment, we discerned

important patterns in how risk assessments influence human judgments of risk. Although these experiments

involved laypeople rather than judges—limiting the extent to which our results can be assumed to directly im-

1After someone is arrested, courts must decide whether to release that person until their trial. This is typically done by
setting an amount of “bail,” or money that the defendant must pay as collateral for release. The broad goal of this process is
to protect individual liberty while also ensuring that the defendant appears in court for trial and does not commit any crimes
while released (whether the defendant is guilty of the offense that led to the arrest is not a factor at this stage). In order to
make pretrial release decisions, judges must determine the likelihood—or the “risk”—that the defendant, if released, will
fail to appear in court or will be arrested.

28



plicate real-world risk assessments—they highlight several types of interactions that should be studied further

before risk assessments can be responsibly deployed in the courtroom.

Before running our experiments, we made three hypotheses:

Hypothesis 1 (Performance). Participants presented with a risk assessment will make predictions that are less

accurate than the risk assessment’s.

Hypothesis 2 (Evaluation). Participants will be unable to accurately evaluate their own and the algorithm’s

performance.

Hypothesis 3 (Bias). As they interact with the risk assessment, participants will be disproportionately likely to

increase risk predictions about Black defendants and to decrease risk predictions about white defendants.

Our results suggest several ways in which the interactions between people and risk assessments can generate

errors and biases in pretrial predictions, thus calling into question the supposed efficacy and fairness of risk

assessments. First, even when presented with the risk assessment’s predictions, participants made decisions

that were less accurate than the advice provided. Second, people could not effectively evaluate the accuracy

of their own or the risk assessment’s predictions: participants’ confidence in their performance was negatively

associated with their actual performance and their judgments of the risk assessment’s accuracy and fairness had

no association with the risk assessment’s actual accuracy and fairness. Finally, participant interactions with the risk

assessment introduced two new forms of bias (which we collectively term “disparate interactions”) into decision-

making: when evaluating Black defendants, participants were 25.9% more strongly influenced to increase their

risk prediction at the suggestion of the risk assessment and were 36.4% more likely to deviate from the risk

assessment toward higher levels of risk. Further research is necessary to ascertain whether judges exhibit similar

behaviors.
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3.2 Methods

3.2.1 Study Design

See Section 2.4 for the full details of the study design. Here, I describe the elements of this experiment that are

particular to this study. This study included only the pretrial setting and did not include the loans setting.

Data and Risk Assessments

After developing the risk assessment, we evaluated it for fairness. As Figure 3.1 indicates, the model is well-

calibrated: at every risk score from 10% to 60% (the full range of risks predicted), Black and white defendants

are statistically equally likely to violate pretrial release. We focused on calibration not as an ideal metric for

fairness (recognizing that no perfect metric for fairness can exist [200]), but because it is the most commonly-

used approach for evaluating risk assessments in practice [278, 166, 130]. In fact, similarly to COMPAS [17],

we find that our model disproportionately makes false positive errors for Black defendants compared to white

defendants (7.0% versus 4.6%, assuming a naïve threshold of 50%).

For this study, we selected an experimental sample of 500 defendants whose profiles would be presented to

both the control and treatment groups during the experiments (Table 3.1).

Experiment Setup

Each participant was presented with narrative profiles about a random sample of 25 defendants drawn from the

500-person experiment sample population, and was asked to predict each defendant’s risk (Figure 3.2).
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Figure 3.1: Comparison of risk assessment predictions and actual violation probabilities for Black andwhite defendants,

indicating that themodel is well-calibrated across race. Bands indicate 95% confidence intervals.

Experiment Sample Sample (Black) Sample (White)
N=500 N=303 N=197

Background
Male 79.6% 81.9% 76.1%
Black 60.6% 100.0% 0.0%
Mean age 28.7 27.7 30.3
Drug crime 42.6% 44.9% 39.1%
Property crime 34.6% 33.3% 36.5%
Violent crime 17.8% 17.8% 17.8%
Public order crime 5.0% 4.0% 6.6%
Prior arrest(s) 54.4% 61.7% 43.1%
# of prior arrests 3.5 4.2 2.4
Prior conviction(s) 35.4% 40.9% 26.9%
# of prior convictions 2.0 2.3 1.5
Prior failure to appear 27.6% 33.0% 19.3%

Outcomes
Rearrest 15.4% 17.8% 11.7%
Failure to appear 19.6% 19.5% 19.8%
Violation 29.8% 31.4% 27.4%

Table 3.1: Summary statistics for the 500 defendants presented to participants. See Table 2.1 for the attributes of the

full data sample.
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Figure3.2: Anexample of the prompt presented to participants in the treatment group. Participants in the control group

saw the same prompt, but without the sentence about the risk score algorithm.

3.2.2 Analysis

Because we presented the same set of 500 defendants to both the control and treatment groups, we couldmeasure

the influence of the risk scores on the predictions about each defendant by comparing the predictions made by

the control and treatment groups. For each defendant j, we defined the risk score’s influence

Ij =
tj − cj
rj − cj

(3.1)

where tj and cj are the average predictions made about that defendant by participants in the treatment and control

groups, respectively, and rj is the prediction made by the risk assessment. An I = 0 means that, on average, the

treatment group makes identical predictions to the control group, completely discounting the risk score, while an

I = 1 means that the treatment group makes identical predictions to the risk score.2 This measure of influence

is similar to the “weight of advice” metric that has been used to measure how much people alter their decisions

2Although I will mostly fall between 0 and 1, it is possible for I to fall outside these bounds if participants move in the
opposite direction than the risk assessment suggests or adjust beyond the risk assessment.
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Figure 3.3: Comparison of x) the difference between the risk score r and the control group’s average prediction c and y)
the difference between thedistributions of predictionsmadeby the control and treatment groups, asmeasuredby the p-

value of aMann-Whitney-Wilcoxon (MWW) test. Each dot represents one defendant and is made partially transparent

such that darker regions represent clusters of data. The blue line and gray band represent a local regression (LOESS)

smoothing fit and 95CI. As r and c diverge, the treatment and control group prediction distributions also diverge. This
indicates that, although our analyses focused on the average predictionsmade by the control and treatment groups, the

risk assessment influenced the full distribution of predictionsmade by the treatment group.

when presented with advice [519, 309]. Comparing the distributions of predictions made by the control and

treatment groups indicates that the risk assessment influences the full distribution of predictions made by the

treatment group, not just the average (Figure 3.3). To obtain reliable measurements, when evaluating algorithm

influence we excluded all predictions about the 112 defendants for whom |rj − cj| < 0.05.

We used a variant of Equation 3.1 to measure the influence of the risk assessment on each participant in the

treatment group. For every prediction made by a participant, we measured the risk assessment’s influence by

taking that prediction in place of the average treatment group prediction. We then averaged these influences

across the 25 predictions that the participant made. That is, the influence of the risk assessment on participant

k is

Ik =
1
25

25∑
i=1

pki − ci
ri − ci

(3.2)

where pki refers to participant k’s prediction about the ith defendant (out of 25) presented.
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Our primary dimension of analysis was to compare behavior and performance across the race of defendants,

which has been at the crux of debates about fairness in pretrial and sentencing risk assessments [17, 82? ]. Similar

audits should be conducted across other intersecting forms of identity, such as gender and class [108].

3.3 Results

We conducted trials on Mechanical Turk over the course of a week in June 2018 (in 6 batches over 4 weekdays

and 2 weekend days, at times ranging from morning to evening to account for variations in the population of

Turk workers). 601 workers completed the experiment; we excluded all data from participants who failed at least

one of the attention check questions or who required more than three attempts to pass the comprehension test.

This process yielded a population of 554 participants (Table 3.2). The participants were 58.5% male and 80.5%

white, and the majority (65.5%) have completed at least a college degree. We asked participants to self-report

their familiarity with machine learning and the U.S. criminal justice system on a scale from 1 (“Not at all”) to 5

(“Extremely”).

During the exit surveys, participants reported that the experiment paid well, was clear, and was enjoyable.

Participants earned an average bonus of $1.54 (median=$1.56), making the average total payment $3.54. Par-

ticipants completed the task in an average of 20 minutes (median=12), and earned an average wage of $20 per

hour (median=$18). Out of 213 participants who responded to a free text question in the exit survey asking

for any further comments, 32% mentioned that the experiment length and payment were fair. Participants were

also asked in the exit survey to rate how clear and enjoyable the experiment was, on a scale from 1 to 5. The

average rating for clarity was 4.4 (55% of participants rated the experiment clarity a 5), and the average rating for

enjoyment was 3.6 (56% rated the experiment enjoyment a 4 or 5).

The participants cumulatively made 13,850 predictions about defendants, providing us with 13.85± 3.9 pre-

dictions about each defendant’s risk under each of the two experimental conditions.
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All Control Treatment
N=554 N=250 N=304

Male 58.5% 60.4% 56.9%
Black 7.4% 8.0% 6.9%
White 80.5% 80.0% 80.9%
18-24 years old 9.7% 7.6% 11.5%
25-34 years old 42.4% 43.6% 41.4%
35-59 years old 43.9% 44.4% 43.4%
60-74 years old 4.0% 4.4% 3.6%
College degree or higher 65.5% 67.6% 63.8%
Criminal justice familiarity 2.8 2.9 2.8
Machine learning familiarity 2.4 2.3 2.4
Experiment clarity 4.4 4.5 4.4
Experiment enjoyment 3.6 3.6 3.7

Table 3.2: Attributes of the participants in our experiments.

Control Treatment Risk assessment
N=6,250 N=7,600 N=7,600

Average reward 0.756 0.786 0.807
False positive rate 17.7% 14.8% 10.1%

Table 3.3: The first two columns show the performance of participants within the control and treatment groups and

the third column shows the performance of the risk assessment (N is the total number of predictions made). Two-sided

t-tests and χ2 tests confirm that the average rewards and the false positive rates, respectively, of all three prediction

approaches are statistically distinct from one another (all with p < 10−5).

3.3.1 Hypothesis 1 (Performance)

Participants in the treatment group earned a 4.0% larger average reward and a 16.4% lower false positive rate than

participants in the control group (Table 3.3). A two-sided t-test and χ2 test confirm that these differences are

statistically significant (both with p < 10−5). A regression of each participant’s performance on their treatment

and personal characteristics found that being in the treatment group was associated with a 0.03 higher average

reward (p < 10−7). The only personal attribute that had a significant relationship with average reward was gender

(women performed slightly better than men, with p = 0.045).

Yet although presenting the risk assessment improved the performance of participants, the treatment group
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Figure 3.4: Distribution of differences between participant performance and risk assessment (RA) performance over

the course of each treatment group participant’s trial. Negative values indicate that the treatment group participant

received a lower average reward than the risk assessment for the 25 predictions that the participant made. Out of the

304 treatment group participants, 195 (64.1%) earned a lower average reward than the risk assessment, 37 (12.2%)

earned an equal average reward, and 72 (23.7%) earned a larger average reward.

significantly underperformed the the risk assessment (Table 3.3). Despite being presented with the risk assess-

ment’s predictions, the treatment group achieved a 2.6% lower average reward and a 46.5% higher false positive

rate than the risk assessment (both with p < 10−8). Only 23.7% of participants in the treatment group earned a

higher average reward than the risk assessment over the course of their trial, compared to 64.1% who earned a

lower reward than the risk assessment (Figure 3.4).

We broke these results down by race to compare how participants and the risk assessment performed when

making predictions about Black and white defendants. As Figure 3.5 indicates, a similar pattern was true for both

races: the treatment group outperformed the control group but underperformed the risk assessment. Taking

the control group performance as a lower bound and the risk assessment performance as an upper bound, the

treatment group achieved a similar relative improvement in its predictions about both races: for average reward,

58.7% of possible improvement for Black defendants and 59.7% for white defendants; for false positive rate,

39.3% of possible improvement for Black defendants and 39.5% for white defendants (neither difference across
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Figure 3.5: Performance of the control group, treatment group, and risk assessment, broken down by defendant race. In

both cases, the treatment group outperforms the control group but underperforms the risk assessment.

race is statistically significant).

The actual performance level differs significantly across race, however. All three prediction approaches (i.e.,

the control group, the treatment group, and the risk assessment) achieve a larger reward and lower false positive

rate for white defendants than for Black defendants (all with p < 10−6). Most notably, the treatment group attains

a 4.5% higher average reward for white than Black defendants and its false positive rate for Black defendants

(18.3%) is more than double its false positive rate for white defendants (9.0%).

3.3.2 Hypothesis 2 (Evaluation)

To assess whether participants could evaluate the quality of their predictions, we compared their self-reported

confidence (from the exit survey) to their actual performance, as measured by their average Brier reward dur-

ing the task. The average participant confidence was 3.2 (on a scale from 1 to 5), with the reward decreasing

as reported confidence increases (Figure 3.6). We regressed confidence on performance (controlling for each

participant’s treatment, demographic information, and exit survey responses) and found that average reward
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Figure 3.6: Comparison of participant evaluations and the actual behaviors of themselves and the risk assessment (RA).

Each x-axis represents the participant reflection provided for the first four questions of the exit survey; the y-axes rep-

resent a proxy for the actual outcome that the participant was evaluating (as described in Section 3.3.2). Each dot rep-

resents one participant and is made partially transparent such that darker regions represent clusters of data. The linear

regression fits presented here do not include the controls described in Section 3.3.2, but are shown for demonstration

purposes, as the fits depicted closely resemble the relationships found in the full regression analyses.

was negatively associated with confidence (p = 0.0186). In other words, the more confidence participants ex-

pressed in their predictions, the less well they actually performed. This pattern holds across both the control

and treatment groups.

We next analyzed whether participants in the treatment group could evaluate the risk assessment’s accuracy,

as measured by its average Brier reward on the 25 defendants presented to the participant (these average rewards

ranged from 0.69 to 0.91). We regressed the participants’ evaluations of the risk assessment’s accuracy against

the risk assessment’s actual performance, while controlling for each participant’s performance, demographic
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information, and exit survey responses. The participant’s evaluation of the risk assessment’s accuracy did not have

any significant relationship with the risk assessment’s performance during the task, suggesting that participants

were unable to perceive any differences in risk assessment accuracy over the samples they observed (Figure 3.6).

We also considered whether participants could discern how fairly the risk assessment made predictions. As a

roughmeasure of algorithmic fairness during each trial, we measured the difference between the risk assessment’s

false positive rates for Black and white defendants on the 25 defendants presented to the participant (in order

to focus on the most salient aspect of bias, we restricted this analysis to the 81% of participants for whom the

risk assessment had a greater or equal false positive rate for Black than white defendants). Regressing participant

evaluations of the risk assessment’s fairness on the risk assessment’s false positive rate differences (controlling

for each participant’s performance, demographic information, and exit survey responses, along with the risk

assessment’s performance) found no significant relationship between perceived and actual fairness (Figure 3.6).

Finally, we evaluated whether participants in the treatment group could recognize how heavily they incorpo-

rated the risk assessment into their decisions. Regressing the participants’ self-reports of influence on the extent

to which they were actually influenced by the risk assessment (using the risk score influence measure introduced

in Equation 3.2, and controlling for each participant’s performance, demographic information, and exit survey

responses, along with the risk assessment’s performance) indicates that participants could generally discern how

strongly they were influenced by the risk assessment (p < 10−4; Figure 3.6).

3.3.3 Hypothesis 3 (Bias)

We interrogated Hypothesis 3 through two complementary approaches: first, by taking the control group’s pre-

dictions as the baseline participant predictions to measure the risk assessment’s influence on the treatment group,

and second, by taking the risk assessment’s predictions as the starting point to measure how much and in which

direction the treatment group participants deviated from those predictions.

Although we could not precisely discern how participants made decisions, the responses to an optional free
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Deviated from the risk assessment (N=79, 50.6%; average reward=0.79)
“I used the risk scores as a starting point and then I made adjustments based on my own intuition
about each case.”
“I used them as an anchor point, and then shifted up or down one depending on my personal
feelings about the individual cases.”

Incorporated the risk assessment after making own judgment (N=58, 37.2%; average re-
ward=0.79)
“I did not consider it until after making my own decision and then adjusted accordingly.”
“decided on a score myself first, then I let the risk score slightly sway my decision.”

Followed the risk assessment completely (N=10, 6.4%; average reward=0.81)
“I input exactly what the risk score indicated. It’s probably smarter than I am.”
“I used the risk score all the time for the entire HIT. Machine learning is much more accurate than
humans.”

Ignored the risk assessment entirely (N=9, 5.8%; average reward=0.77)
“I just went with my own thoughts after reading each scenario.”
“I didn’t really pay that much attention to it since I felt the percentages were too low.”

Table 3.4: A representative sample of the responses that treatment group participants submitted when asked on the

exit survey about how they incorporated the risk scores into their decisions, broken down by the general strategy they

indicate having used.

response question in the exit survey about how participants used the risk scores suggest that people predom-

inantly followed a mix of these two approaches. Out of the 156 participants who described their strategy, 79

(50.6%) used the risk assessment as a baseline, 58 (37.2%) made their own judgment and then incorporated the

risk assessment, 10 (6.4%) followed the risk assessment completely, and 9 (5.8%) ignored the risk assessment

entirely (Table 3.4). The group that followed the risk assessment earned the largest average reward (0.81), while

the group that ignored the risk assessment earned the lowest (0.77). The other two groups both earned average

rewards of 0.79, and were statistically indistinguishable.

Analyzing behavior through the lens of the two most common strategies yields complementary evidence for

“disparate interactions,” i.e., interactions with the risk assessment that lead participants to disproportionately

make higher risk predictions about Black defendants and lower risk predictions about white defendants.
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Figure 3.7: The influence of the risk assessment (RA) on participant predictions, broken down bywhether the risk score

is less or greater than the control group’s average prediction (r < c and r > c, respectively), and compared across the
race of defendants. While the risk assessment’s influence is nearly identical across racewhen r < c, when r > c the risk
assessment exerts a 25.9% stronger influence on participants who are evaluating Black defendants (p = 0.02).

Influence of risk scores

Because we presented the same population of defendants to the control and treatment groups, we could directly

measure how presenting the risk score to participants affected the predictions made about each defendant. For

each defendant, we measured the influence of the risk assessment on the treatment group’s predictions as de-

scribed in Equation 3.1 (excluding the 112 defendants for whom |rj− cj| < 0.05). The risk assessment exhibited

an average influence of 0.61; as this number is greater than 0.5, it suggests that treatment group participants

placed more weight on the risk assessment than on their own judgment. A two-sided t-test found no statistically

significant difference between the risk assessment’s influence when its prediction was less or greater than the

control group’s prediction (r < c or r > c, respectively).

Splitting the defendants by race tells a more complex story (Figure 3.7). When the risk score was lower than
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the control group’s average prediction (r < c), the risk assessment exerted a similar influence on participants

regardless of the defendant’s race (0.61 vs. 0.60; p=0.77). Yet when the risk assessment predicted a higher

risk than the control group (r > c), it exerted a 25.9% stronger average influence on predictions about Black

defendants than on predictions about white defendants (0.68 vs. 0.54; a two-sided t-test finds p = 0.02 and 95CI

of the difference in means [0.02, 0.25]).

This outcome cannot be explained by differences in the raw disparities between the risk assessment’s and the

control group’s predictions (i.e., the value of r − c), since the values of r − c do not differ significantly across

defendant race (the average disparity for both races is 0.25 when r < c and 0.11 when r > c). Breaking out

Figure 3.7 based on the value of r− c indicates that the risk assessment exerts an equal influence on predictions

about both races at all values of r− c, except for when r− c = 0.1 (Figure 3.8).

Thus, the risk assessment leads to larger increases in risk for Black defendants (as measured by t− c). While

the shift in participant predictions precipitated by the risk assessment is identical when r < c (the risk assessment

generates an average reduction of 0.14 for both Black and white defendants), when r > c the average increase

for Black defendants is 0.075 while the average increase for white defendants is 0.063. Although these results are

not significant (a two-sided t-test finds p = 0.076 and 95CI difference in means [-0.001, 0.02]), considering each

prediction from the treatment group independently, rather than taking averages for each defendant (i.e., replacing

tj with pkj in Equation 3.1), yields further evidence for this result: the average increase for Black defendants is

0.077 compared to 0.064 for white defendants (a 20.3% larger average increase), with p = 0.003 and 95CI

difference in means [0.004, 0.02]. Moreover, among defendants for whom r− c = 0.1, the increase in participant

risk prediction instigated by the risk assessment is 25.5% larger for Black defendants (p = 0.042; Figure 3.8).

We ran linear regressions to see what determines the risk assessment’s influence on participants. We split

defendants into two categories—those for whom r < c (Group 1) and those for whom r > c (Group 2). For

each group, we regressed the algorithm’s influence on predictions about each defendant (Equation 3.1) on that

defendant’s demographic attributes and criminal background, along with the value of |r − c|. For Group 1, the
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Figure 3.8: Top: The average influence of the risk assessment on treatment group participants (as measured by Equa-

tion 3.1) based on defendant race and the difference between the risk assessment and control group predictions (r− c),
roundedto thenearest0.1. Thebandsdepict thestandarderror foreachgroup; thestandarderrorsaroundthe r−c = 0
groups are particularly large because (given that r− c is the denominator of Equation 3.1) the influencemeasurements
become unstable when r and c are almost identical (for this reason we excluded the eight defendants for whom r = c
fromall threepanels). Thedifferences in the riskassessment’s influenceacross racearestatistically significantonlywhen

r − c = 0.1: the average influence on participants evaluating Black defendants is 0.68 while the average influence on
participants evaluating white defendants is 0.52 (p = 0.02, 95CI difference in means [0.02,0.30]). Middle: The actual

change in risk prediction instigated by the risk assessment (i.e., t− c, the numerator of Equation 3.1). The differences in
the risk assessment’s pull across race are statistically significant only when r− c = 0.1: the average increase for Black
defendants is 0.064 while the average increase for white defendants is 0.051 (p = 0.042, 95CI difference in means
[0.0005, 0.0255]). Bottom: The number of Black andwhite defendants who fall into each category.
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risk assessment exerted more influence as |r − c| increased, but less influence for defendants with a previous

failure to appear on their records. For Group 2, the risk assessment similarly was more influential as |r − c|

increased. Three other attributes were also statistically significant: the risk assessment exerted more influence

on participants making predictions about Black defendants, defendants who were arrested for a violent crime,

and defendants with more prior convictions. Thus, when r > c, participants were more strongly influenced to

increase their risk predictions for Black defendants in two ways: they responded both directly to race and to a

feature that is correlated with race (prior convictions; Table 2.1).

Participant deviations from risk scores

For each predictionmade by participants in the treatment group, wemeasured how far and in which direction that

prediction deviated from the risk assessment’s recommendation. That is, we measured dkj = pkj − rj. The average

deviation among the 7600 treatment group predictions was 0.014, with a median deviation of 0. Participants

deviated to a higher risk prediction 26.9% of the time, matched the risk assessment 40.8% of the time, and

deviated to a lower risk prediction 32.3% of the time. The results from Section 3.3.1 suggest that these deviations

tend to make participant predictions less accurate than the risk assessment.

As in the previous section, these statistics differ by defendant race. While the average deviation for white

defendants was -0.002, the average deviation for Black defendants was 0.024 (p = 7 × 10−13, 95CI difference

in means [0.019, 0.033]). This difference emerged because participants were more likely to deviate positively

from the risk assessment when evaluating Black defendants and to deviate negatively when evaluating white

defendants (the average deviation magnitude was the same across race for both positive and negative deviations).

As Figure 3.9 depicts, participants deviated to a higher risk prediction 30.0% of the time for Black defendants

compared to 22.0% of the time for white defendants (36.4% more), and conversely deviated to a lower risk

prediction 29.2% of the time for Black defendants compared to 37.2% of the time for white defendants (21.5%

less). Participants matched the risk assessment in 40.8% of predictions when evaluating both races.
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Figure 3.9: The rate atwhich participants deviated from the risk assessment’s prediction toward higher and lower levels

of risk, broken downby defendant race. When evaluating Black defendants, participantswere 36.4%more likely to devi-

ate positively from the risk assessment and 21.5% less likely to deviate negatively (participant predictions matched the

risk assessment at an equal rate for both races).

We regressed each deviation on the characteristics of the defendant and the participant, the prediction made

by the risk assessment, and the participant’s status in the experiment (i.e., which in the sequence of 25 predictions

the participant was making). Since these deviations include repeated samples for each defendant and participant,

we used a linear mixed-effects model with random effects for the defendant and participant identities. Several

characteristics of defendants had statistically significant associations with the deviations: participants were more

likely to deviate positively from the risk assessment when evaluating younger defendants, defendants arrested

for a violent crime, defendants with more prior arrests and convictions, and defendants with a prior failure to

appear. Neither the defendant’s race nor any attributes of participants had a statistically significant relationship

with deviations.

These results suggest that while participants did not deviate from the risk assessment based explicitly on race,

they deviated based on attributes that are unevenly distributed across race: compared to white defendants, Black

defendants on average have more prior arrests, convictions, and failures to appear (Table 2.1).
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3.4 Discussion

This study presents initial evidence regarding how risk assessments influence human decision-makers. Confirm-

ing our three hypotheses, our results indicate that people underperform risk assessments even when provided

with its advice; are unable to evaluate the performance of themselves or the risk assessment; and engage in “dis-

parate interactions,” whereby their use of risk assessments leads to higher risk predictions about Black defendants

and lower risk predictions about white defendants.

This work demonstrates how theoretical evaluations are necessary but insufficient to evaluate the impacts of

risk assessments: what appears to be a fair source of information can, depending on how people interact with it,

become a leverage point around which discrimination manifests. It is necessary to place risk assessments into a

sociotechnical context so that their full impacts can be identified and evaluated.

Our results highlight a significant but often overlooked aspect of algorithmic decision-making aids: introduc-

ing risk assessments to pretrial decisions does not eliminate discretion to create “objective” judgments, as many

have argued [217, 361, 115]. Instead, risk assessments merely shift discretion to different places, which include

the judge’s interpretation of the assessment and decision about how strongly to rely on it. This reality must

become a central consideration of any proposals for and evaluations of risk assessments, especially given that

previous attempts to standardize the criminal justice system—sentencing reform efforts in the 1980s—shifted

discretion to prosecutors, generating a racially-biased rise in excessive punishment [315].

A particular danger of judicial discretion about how to incorporate risk assessments into decisions is the

potential for disparate interactions: biases that emerge as an algorithmic prediction filters through a person into

a decision. Our experiment participants were 25.9% more strongly influenced by the risk assessment to increase

their risk prediction when evaluating Black defendants than white ones, leading to a 20.3% larger average increase

for Black than white defendants due the risk assessment. Moreover, participants were 36.4% more likely to

deviate positively from the risk assessment and 21.5% less likely to deviate negatively from the risk assessment
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when evaluating Black defendants.3

These disparate interactions emerged through both direct and indirect bias: while race had a direct role in

increasing the risk score’s influence on participants, the disparities in influence and deviations also arose due to

participants responding to particularly salient features that are unevenly distributed by race (such as number of

prior convictions)—essentially double-counting features for which the risk assessment had already accounted.

This behavior resembles that of machine learning algorithms, which can be racially biased even when race is not

included as an explicit factor [17], and highlights the importance of studying the complex mechanisms through

which discrimination can manifest. Future work should explore how different ways of presenting and explain-

ing risk assessments (and of training people to use them) could improve performance and in particular reduce

disparate interactions.

An important research direction that could guide such efforts is to study the processes through which people

make decisions when provided with risk assessments. Our participants followed several approaches when evalu-

ating defendants, the most common being using the risk assessment to influence their initial judgment and using

the risk assessment as a baseline (Table 3.4). Analyzing participant behavior from both of these perspectives

indicated related forms of disparate interactions. Meanwhile, the most successful strategy was to directly follow

the risk assessment. While in theory it is possible for people to synthesize the risk assessment with their own

judgment to make better decisions than either could alone, in practice we found no evidence that any strategy

taken by participants leads them to outperform the risk assessment.

A major limitation to people’s use of risk assessments is their inability to evaluate their own and the risk

assessment’s performance. Many proponents defend the deployment of risk assessments on the grounds that

judges have the final say and can discern when to rely on the predictions provided [514, 243, 291]. But our results

indicate that this is an unrealistic expectation: our participants’ judgments about their own performance were

3Although it is possible that participants predicted higher risk for Black defendants to account for the racial bias in
arrests, we do not believe this was an important factor since no participants mentioned any such thought process in the
exit survey when describing their behavior.
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negatively associated with their actual performance, and their evaluations of the risk assessment had no statistically

significant relationship with its actual performance (other research has similarly shown that people struggle

to detect algorithmic mistakes across a variety of conditions [400]). Given these results, it is no wonder that

participants in the treatment group underperformed the risk assessment. How can we expect people to navigate

the balance between their own judgment and a risk assessment’s when they are unable to accurately assess their

own or the algorithm’s performance in the first place? Determining how to incorporate a risk assessment into

one’s own prediction is arguably a more challenging task that requires more expertise than merely making a

prediction.

The results of this study raise one of the most important but rarely-discussed issues at the heart of debates

about risk assessments: how should risk assessments be incorporated into existing practices? On the one hand,

risk assessments alone achieve better performance than individuals (both with and without a risk assessment’s

aid) in terms of accuracy and false positive rates.4 Yet there are many reasons to be wary of relying too heavily on

risk assessments, including due process concerns, their embedding of discriminatory and punitive approaches to

justice, and their potential to hinder more systemic criminal justice reforms [192, 460, 88] Meanwhile, the current

approach of presenting predictions to judges without sufficient guidelines or training comes with the issues of

poor interpretation and disparate interactions.

The conflicts between these positions are apparent in how the Wisconsin Supreme Court severely circum-

scribed the role of risk assessments in its decision in State v. Loomis, regarding the use of COMPAS in sentencing.

Despite defending the use of COMPAS on the grounds that it “has the potential to provide sentencing courts

with more complete information,” the Court also mandated that “risk scores may not be used: (1) to determine

whether an offender is incarcerated; or (2) to determine the severity of the sentence” [514]. If COMPAS is not

supposed to influence the sentence, there are few purposes that the “more complete information” it provides

4This result assumes a comparison between a single individual and a risk assessment. This is in contrast to a recent
study suggesting that humans are just as accurate as COMPAS: that result holds only when the predictions of humans are
aggregated to create a “wisdom of the crowd” effect; in fact, that study similarly found COMPAS to be more accurate than
individuals [141].
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can serve—and few ways to ensure that it serves only those purposes. In that case, why show it at all?

With this in mind, the next chapter looks to the principles that are desirable when algorithms are incorporated

into human decision-making processes.
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Chapter 4

ThePrinciples andLimits of Algorithm-in-the-

Loop Decision-Making

4.1 Introduction

The emergence of novel algorithm-in-the-loop decision-making processes raises two questions—one normative,

one empirical—that require answers before machine learning should be integrated into some of society’s most

consequential decisions:

1. What criteria characterize an ethical and responsible decision when a person is informed by an algorithm?

2. Do the ways that people make decisions when informed by an algorithm satisfy these criteria?

Both of these questions lack clear answers. While there exist many standards, policies, and studies related to the

decisions made by people and institutions, our normative and empirical understanding of algorithm-in-the-loop

decision-making is far thinner.
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Despite widespread attention to incorporating ethical principles (most notably, fairness, accountability, and

transparency) into algorithms, the principles required of the people using algorithms largely remain to be articu-

lated and evaluated. For although calls to adopt machine learning models often focus on the accuracy of these

tools [275, 99, 460, 340], accuracy is not only attribute of ethical and responsible decision-making. The principle

of procedural justice, for instance, requires that decisions be (among other things) accurate, fair, consistent, cor-

rectable, and ethical [301]. Even as algorithms bear the potential to improve predictive accuracy, their inability to

reason reflexively and adapt to novel or marginal circumstances makes them poorly suited to achieving many of

these principles [11]. As a result, institutions implementing algorithmic advice may find themselves hailing the

algorithm’s potential to provide valuable information while simultaneously cautioning that the algorithm should

not actually determine the decision that is made [514].

In practice, algorithm-in-the-loop decision-making requires synthesizing the often divergent capabilities of

people and machine learning models. Despite this imperative, however, research and debates regarding algorith-

mic decision-making aids have primarily emphasized the models’ statistical properties (e.g., accuracy and fairness)

rather than their influence on human decisions [17, 130]. Thus, even as institutions increasingly adopt machine

learning models in an attempt to be “evidence-based” [460, 291, 361, 498], relatively little is actually known about

how machine learning models affect decision-making in practice. This lack of evidence is particularly troubling

in light of research which suggests that people struggle to interpret machine learning models and to incorporate

algorithmic predictions into their decisions, often leading machine learning systems to generate unexpected and

unfair outcomes (see Chapter 3).

In this chapter, we explore both the normative and empirical dimensions of algorithm-in-the-loop decision-

making. We focused on risk assessments—machine learning models that predict the probability of an adverse

outcome—which are commonly used in algorithm-in-the-loop decisions in settings such as the criminal justice

system.

We began by articulating a framework with which to evaluate human-algorithm interactions, positing three
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desiderata that are essential to effective and responsible decision-making in algorithm-in-the-loop settings. These

principles relate to the accuracy, reliability, and fairness of decisions. Although certainly not comprehensive, these

desiderata provide a starting point on which to develop further standards for algorithm-in-the-loop decision-

making.

We then ran experiments using Amazon Mechanical Turk to study whether people satisfy these principles

when making predictions about risk. We explored these decisions in two settings where risk assessments are in-

creasingly being deployed in practice—pretrial release hearings and financial loan applications [291, 361, 450]—

and under several conditions for presenting the risk assessment or structuring the human-algorithm interaction.

This experimental setup allowed us to evaluate algorithm-in-the-loop decision-making as a function of risk as-

sessment presentation and to compare outcomes across distinct prediction tasks. Although these experiments

involved laypeople rather than practitioners (such as judges or loan officers), meaning that we cannot take the

observed behaviors to be a direct indication of how risk assessments are used in real-world settings, our results

highlight potential challenges that must be factored into considerations of risk assessments.

People’s behavior in the experiments reliably satisfied only one of our three principles for algorithm-in-the-

loop decision-making. While almost every treatment improved the accuracy of predictions, no treatment satisfied

our criteria for reliability and fairness. In particular, we found that under all conditions in both settings our study

participants 1) were unable to effectively evaluate the accuracy of their own or the risk assessment’s predictions,

2) did not calibrate their reliance on the risk assessment based on the risk assessment’s performance, and 3)

exhibited racial bias in their interactions with the risk assessment. Further research is necessary to determine

whether the practitioners who use risk assessments exhibit similar behaviors.
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4.2 Principles for Algorithm-in-the-Loop Decision-Making

An algorithm-in-the-loop framework provides a new approach to studying algorithmic decision-making aids:

rather than evaluating models like risk assessments simply as statistical tools of prediction, we must consider

them as sociotechnical tools that take shape only as they are integrated into social contexts (see Chapter 2). In

other words, risk assessments are technologies of “social practice” that “are constituted through and inseparable

from the specifically situated practices of their use” [469]. This means that a risk assessment’s statistical properties

(e.g., AUC and fairness) do not fully determine the risk assessment’s impacts when introduced in social contexts.

Given that the outcomes are ultimately more important than the statistical properties, a greater emphasis on the

relationship between risk assessments and their social impacts is necessary.

Although arguments in favor of risk assessments often focus on the predictive accuracy of these tools [275, 99,

460, 340], many important decisions require more than just accuracy. For example, the principle of procedural

justice requires that decisions be (among other things) accurate, fair, consistent, correctable, and ethical [301].

While many institutions have a long history of pursuing these goals and creating procedures to ensure that

they are satisfied, achieving these goals in algorithm-in-the-loop settings requires new definitions, designs, and

evaluations. Notably, although algorithms often make more accurate predictions than people do, their inability

to reason reflexively and adapt to novel or marginal circumstances makes them poorly suited to achieving many

principles of responsible and ethical decision-making [11]. Algorithm-in-the-loop decision-making thus requires

synthesizing the often divergent capabilities of people and machine learning models.

As a starting point toward this end, we suggest three principles of behavior that are desirable in the context

of making predictions (or decisions based on predictions) with the aid of machine learning models. Our three

desiderata are as follows:

Desideratum 1 (Accuracy). People using the algorithm should make more accurate predictions than they

could without the algorithm.
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Desideratum 2 (Reliability). People should accurately evaluate their own and the algorithm’s performance

and should calibrate their use of the algorithm to account for its accuracy and errors.

Desideratum 3 (Fairness). People should interact with the algorithm in ways that are unbiased with regard to

race, gender, and other sensitive attributes.

Desideratum 1 is themost straightforward: the goal of introducing algorithms is typically to improve predictive

performance [275, 99, 460, 340].

Desideratum 2 is important for algorithm-in-the-loop decision-making to be reliable, accountable, and fair.

If people are unable to determine the accuracy of their own or the algorithm’s decisions, they will not be able to

appropriately synthesize these predictions to make reliable decisions. Such evaluation is essential to correcting

algorithmic errors: “overriding” the risk assessment is commonly recognized as an essential feature of responsi-

ble decision-making with risk assessments [514, 243, 291, 498]. This principle is also important to ensuring the

fairness of decisions, since algorithms are prone to making errors on the margins [11] and minority groups are

often less well represented in datasets. Moreover, if people are unable to evaluate their own or an algorithm’s

decisions, they may feel less responsible and be held less accountable for the decisions they make.

Finally, Desideratum 3 connects to fundamental notions of fairness: decisions should be made without preju-

dice related to attributes such as race and gender. This is particularly important to consider given evidence that

people engage in disparate interactions when making decisions with the aid of a risk assessment (see Chapter 3).

These three principles guided our analyses of the experimental results: we evaluated the participant behaviors

according to each desideratum, demonstrating how all three can be quantitatively evaluated.
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4.3 Methods

4.3.1 Study Design

See Section 2.4 for the full details of the study design. Here, I describe the elements of this experiment that are

particular to this study.

Data and Risk Assessments

For every defendant and applicant, we used the xgboostExplainer package to determine the log-odds influence

of each attribute on the risk assessment’s predictions [170]. We selected samples of 300 defendants and applicants

whose profiles would be shown to participants during the Mechanical Turk experiments (Table 4.1 and Table 4.2).

For the loans setting, we used records about all 421,095 loans issued during 2015. This yielded a dataset of

206,913 issued loans (Table 4.2). The average loan was for $15,133.51; the average applicant had an income of

$78,093.47 and a “Good” credit score. Approximately three-quarters of these loans were fully paid.

Experiment Setup

After being sorted into either the pretrial or loans setting, participants were then randomly sorted into one of six

conditions:

Baseline. Participants were presented with the narrative profile, without any information regarding the risk

assessment. This condition represents the status quo prior to risk assessments, in which people made

decisions without the aid of algorithms, and was one of our two control conditions.

RA Prediction. Participants were presented with the narrative profile as well as the risk assessment’s prediction

in simple numeric form. This condition represents the simplest presentation of a risk assessment and the

typical risk assessment status quo, in which the advice of a model is presented in numerical or categorical
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Sample Black White
N=300 N=178 N=122

Background
Male 85.7% 87.6% 82.8%
Black 59.3% 100.0% 0.0%
Mean age 27.7 27.4 28.2
Drug crime 44.3% 49.4% 36.9%
Property crime 36.0% 32.0% 41.8%
Violent crime 14.7% 14.0% 15.6%
Public order crime 5.0% 4.5% 5.7%
Prior arrest(s) 55.0% 66.9% 37.7%
# of prior arrests 3.6 4.6 2.2
Prior conviction(s) 39.7% 50.0% 24.6%
# of prior convictions 2.2 2.8 1.3
Prior failure to appear 23.7% 30.3% 13.9%

Outcomes
Rearrest 19.0% 24.2% 11.5%
Failure to appear 23.3% 28.1% 16.4%
Violation 32.3% 39.9% 21.3%

Table 4.1: Summary statistics for the 300 defendants presented to participants. See Table 2.1 for the full data sample.

All Sample
N = 206,913 N = 300

Applicant
Annual income $78,093.47 ($73,474.56) $83,190.08 ($83,681.52)
Credit score 695.3 (30.5) 693.9 (30.3)
Home owner 10.2% 10.0%
Renter 40.1% 40.3%
Has mortgage 49.7% 49.7%

Loan
Loan amount $15,133.51 ($8,575.05) $15,377.75 ($8,520.84)
36 months to pay off loan 70.5% 73.3%
Monthly payment $448.49 ($251.44) $462.19 ($253.86)
Interest rate 12.9% (4.5%) 13.05% (4.5%)

Outcomes
Charged off 25.9% 26.0%

Table 4.2: Summary statistics for all approved loans in 2015 and for the 300-loan sample used in the Mechanical Turk

experiments. Numbers in parentheses represent standard deviations.
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form as a factor for the human decision maker to consider. This treatment served as the second control

condition against which we evaluated the following four treatments, which represent a core (though not

exhaustive) set of potential reforms to algorithmic decision aids.

Default. Participants were presented with the RA Prediction condition, except that the prediction form was

automatically set to the risk assessment’s prediction (Figure 4.1). Participants could select any desired

value, however. In Chapter 3, many people followed this strategy when making predictions with the aid

of a risk assessment, looking at the algorithm’s prediction first and then considering whether to deviate

from that value. Moreover, this condition accords with the implementations of risk assessments that treat

the model’s prediction as the presumptive default and require judges to justify any overrides [92, 498].

Update. Participants were first presented with the Baseline condition; after making a prediction, participants

were presented with the RA Prediction condition (for the same case) and asked to make the prediction

again. In Chapter 3, many people first made a prediction by themselves and then took the algorithm

into model when making decisions with the aid of a risk assessment. This treatment adds structure to

the prediction process (by prompting people to focus on the narrative profile before considering the risk

assessment’s prediction), which prior research has found improves decision-making [259, 300].

Explanation. Participants were presented with the RA Prediction condition along with an explanation that

indicated which features made the risk assessment predict notably higher or lower levels of risk (Fig-

ure 4.1).1 This treatment follows from the many calls to present explanations of machine learning predic-

tions [137, 417, 148]. In addition, by indicating which attributes strongly influenced the risk assessment’s

prediction, this treatment may prevent people from double counting features that the model had already

considered, a problem found in Chapter 3.

Feedback. Participants were presented with the RA Prediction condition; after submitting each prediction,

1The explanations were derived from the log-odds influence of each factor, with a threshold of 0.1 and -0.1 to be
included in the lists of positive and negative factors, respectively.
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participants were presented with an alert indicating the outcome of that case (e.g., whether the loan

applicant actually defaulted on their loan). Although in practice immediate feedback on the outcomes of

pretrial release or financial loans would not be available, this treatment provides one form of training for

the users of machine learning systems, which is often regarded as an essential ingredient for the effective

implementation of risk assessments [73, 243, 498].

In all settings and conditions, participants were presented with narrative profiles about a sample of 40 peo-

ple drawn from the 300-person sample populations and were asked to predict their outcomes. Figure 4.1

presents examples of the prompts presented to participants when making predictions.

4.3.2 Analysis

We analyzed the behavior of participants using metrics related to three topics: the quality of participant pre-

dictions, the influence of the risk assessment on participant predictions, and the extent to which participants

exhibited bias when making predictions.

Prediction performance measures

The first set of metrics evaluated the quality of participant predictions across treatments.

We evaluated the quality of each prediction using the Brier score. When presented with a loan applicant who

does not default on their loan, for example, a prediction of 0% risk would yield a score of 1, a prediction of

100% would yield a reward of 0, and a prediction of 50% would yield a score of 0.75.

We defined the “participant prediction score” as the average Brier score attained among the 40 predictions

that each participant made. Similarly, the “risk assessment prediction score” is the average Brier score attained

by the risk assessment. These two metrics were used to evaluate the performance of each participant and the

risk assessment.

We defined the performance gain produced by each treatment t as the improvement in the participant pre-
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diction score achieved by participants in treatment t over participants in the Baseline condition, relative to the

performance of the risk assessment:

Gaint =
St − SB
SR − SB

(4.1)

where St, SB, and SR represent the average prediction scores of participants in the treatment t, of participants in

Baseline, and of the risk assessment, respectively. By definition, the gain of the Baseline condition is 0 and the

gain of the risk assessment is 1.

Risk assessment influence measures

The second set of metrics evaluated how much the risk assessment influenced participant predictions.

We measured the influence of the risk assessment by comparing the predictions made by participants who

were shown the risk assessment with the predictions about the same case made by participants who were not

shown the risk assessment. That is, the influence of the risk assessment on the prediction pki by participant k

about case i ∈ {1, . . . , 300} is

Iki =
pki − bi
ri − bi

(4.2)

where bi is the average prediction about that case made by participants in the Baseline treatment and ri is the

prediction about that case made by the risk assessment. For participants in Update, bi is bki : participant k’s initial

prediction about case i before being shown the risk assessment’s prediction. This is akin to the “weight of advice”

metric that has been used in other contexts to measure how much people alter their decisions when presented

with advice [519, 309]. To obtain reliable measurements, when evaluating risk assessment influence we excluded

all predictions for which |ri − bi| < 0.05.

Given an influence Iki , we can express each prediction as a weighted sum of the risk assessment and baseline

predictions, where pki = (1− Iki )bi + Iki ri. I = 0 means that the participant ignored the risk assessment, I = 0.5

means that the participant equally weighed their initial prediction and the risk assessment, and I = 1 means that
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the participant relied solely on the risk assessment.

Disparate interaction measures

The third set of metrics evaluated whether participants responded to the risk assessment in a racially biased

manner. Following Chapter 3, we evaluated “disparate interactions” by comparing the behaviors of participants

when making predictions about Black and white criminal defendants.2 We measured disparate interactions in

two ways.

Our first measure of disparate interactions compared the influence of the risk assessment on predictions made

about Black and white defendants. We divided the data based on whether the risk assessment prediction ri was

greater or less than the baseline prediction bi (and thus whether the risk assessment was likely to pull participants

toward higher or lower predictions of risk). For each of these two scenarios, we measured the risk assessment’s

influence on predictions about Black defendants and white defendants; for example, we defined the influence

on predictions about Black defendants when ri > bi as IBlack,> = mean{Iki |∀k,Racei = Black, ri > bi}. We then

defined the RA influence disparity as follows:

RA influence disparity> = IBlack,> − Iwhite,> (4.3)

RA influence disparity> > 0 means that when ri > bi, participants were more strongly influenced to increase their

predictions of risk when evaluating Black defendants than when evaluating white defendants.

Our second measure of disparate interactions compared the extent to which participants deviated from the

risk assessment’s suggestion when making predictions. For each prediction pki by participant k about defendant

i, we measured the participant’s deviation from the risk assessment as dki = pki − ri (i.e., dki > 0 means that

participant k predicted a higher level of risk than the risk assessment about defendant i). We used this metric to

2Because we did not possess demographic characteristics about the loan applicants, we applied this analysis only to the
pretrial setting.
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measure the average deviation for each race; for example, the average deviation for all predictions about Black

defendants is DBlack = mean{dki |∀k,Racei = Black}. We then defined the Deviation disparity as follows:

Deviation disparity = DBlack − Dwhite (4.4)

Deviation disparity > 0 means that participants were more likely to deviate positively when evaluating Black de-

fendants than when evaluating white defendants.

4.4 Results

We conducted trials on Mechanical Turk over the course of several weeks in March 2019. Filtering out workers

who failed at least one of the attention check questions, who required more than three attempts to pass the

comprehension test, and who participated in the experiment more than once3 yielded a population of 1156

participants in the pretrial setting and 732 participants in the loans setting (Table ??). Across both settings, a

majority of participants were male, white, and have completed at least a college degree. We asked participants

to self-report their familiarity with the U.S. criminal justice system, financial lending, and machine learning on a

Likert scale from “Not at all” (1) to “Extremely” (5). The average reported familiarity with the three topics in

each setting was between “Slightly” (2) and “Moderately” (3), with little variation across treatments.

Participants reported in the exit survey that the experiment paid well, was clear, and was enjoyable. Consid-

ering both the base payment and the bonus payment, participants in the pretrial setting earned an average wage

of $15.20 per hour and participants in the loans setting earned an average wage of $17.18 per hour. Out of

213 participants who responded to a free text question in the exit survey asking for any further comments, 32%

mentioned that the experiment length and payment were fair. Participants were also asked in the exit survey to

rate how clear and enjoyable the experiment was on a Likert scale from “Not at all” (1) to “Extremely” (5). More

3A server load issue prevented us from recognizing all repeat users when they entered the experiment.
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than 90% of participants in both settings reported that the experiment was “Very” or “Extremely” clear, and

more than half of participants in both settings stated that the experiment was “Very” or “Extremely” enjoyable.

Pretrial Loans
N=1156 N=732

Demographics
Male 55.3% 53.0%
Black 7.1% 7.2%
White 77.2% 77.6%
18-24 years old 8.4% 7.9%
25-34 years old 42.4% 44.5%
35-59 years old 45.0% 43.2%
60+ years old 4.2% 4.4%
College degree or higher 70.9% 71.7%
Criminal justice familiarity 2.8 2.9
Financial lending familiarity 2.7 2.9
Machine learning familiarity 2.4 2.5

Treatment
Baseline 16.5% (N=191) 15.3% (N=112)
Risk Assessment 17.3% (N=200) 16.9% (N=124)
Default 16.9% (N=195) 17.6% (N=129)
Update 16.1% (N=186) 17.9% (N=131)
Explanation 15.1% (N=174) 16.8% (N=123)
Feedback 18.2% (N=210) 15.4% (N=113)

Outcomes
Participant hourly wage $15.20 $17.18
Experiment clarity 4.4 4.4
Experiment enjoyment 3.5 3.7

Table 4.3: Attributes of the participants in our experiments.

In response to exit survey questions asking how they made predictions, participants reported a variety of

strategies for using the risk assessment:

• Follow the risk assessment in most or all cases (e.g., “i mostly trusted the algorithm to be more objective

than i was.”).

• Use the risk assessment as a starting point and then adjust based on the narrative profile (e.g., “It served
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as a jumping off point for my prediction.”).

• Rely on the risk assessment only when unsure about a particular prediction (e.g., “I put my trust into the

algorithm’s predictions for when I felt like I wasn’t too sure.”).

• Make a prediction without the risk assessment and then adjust based on the risk assessment (e.g., “I tried

not to look at it until I came to my own conclusion and then I rated my score against the computers.”).

• Ignore the risk assessment (e.g., “I don’t think the algorithm can be relied on”).

Participants in the pretrial setting also reported diverging approaches with regard to race: while 4.4% of par-

ticipants reported that they considered race when making predictions, 2.2% of participants reported explicitly

ignoring race. These opposing strategies reflect differences in the perceived relationship between race and pre-

diction: participants in the first category saw race as a factor that could improve their predictive accuracy, while

participants in the second category saw race as a factor that should not be incorporated into predictions of risk

(e.g., “I tried to ignore race”).

4.4.1 Desideratum 1 (Accuracy)

Desideratum 1 states that people using the algorithm should make more accurate predictions than they could if

working alone. We found that every treatment except Feedback reliably improved performance over the Baseline

treatment and that the Update treatment yielded the best performance across both settings.

Across all predictions in the pretrial setting, the average participant prediction score was 0.768 and the average

risk assessment prediction score was 0.803. Aside from Feedback (whose performance was not statistically

distinct from that of Baseline), every treatment yielded a performance that was statistically significantly greater

than Baseline and lower than the risk assessment. Compared to RA Prediction, which had an average prediction

score of 0.774, two treatments (aside from Baseline) had statistically significant differences: Feedback had a lower

average prediction score of 0.751 (p < 10−6, Cohen’s d = 0.08), while Update had a higher average score of
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0.782 (p = 0.041, d = 0.03). The gain produced by each non-Baseline treatment (Equation 4.1) ranged from

0.011 for Feedback to 0.603 for Update, while RA Prediction achieved a gain of 0.464 (Figure 4.2). Update

produced a prediction score that was 1.0% greater and a gain that was 30.0% larger than RA Prediction.

A similar pattern emerged in the loans setting. Across all predictions in the pretrial setting, the average

participant prediction score was 0.793 and the average risk assessment prediction score was 0.823. Compared

to RA Prediction, which had an average prediction score of 0.802, two treatments (aside from Baseline) had

statistically significant differences: Feedback had a lower average prediction score of 0.779 (p < 10−4, d = 0.09),

while Update had a higher average score of 0.813 (p = 0.019, d = 0.05). The gain produced by each non-

Baseline treatment ranged from 0.327 for Feedback to 0.821 for Update, while RA Prediction achieved a gain

of 0.682 (Figure 4.2). In other words, Update produced a prediction score that was 1.4% greater and a gain that

was 20.4% larger than RA Prediction.

The relative performance of each treatment was similar across the two settings (Figure 4.2): the gain of the

five non-Baseline treatments had a Pearson correlation of 0.96 (p = 0.010) and a Spearman correlation of 0.9

(p = 0.083). In both settings, Feedback yielded significantly worse performance than RA Prediction, while

Update produced significantly better performance.

To evaluate the relationship between model performance and model presentation, we measured how much

more or less accurate the risk assessment would have needed to be for RA Prediction to yield the same perfor-

mance as the other treatments. Taking all of the predictions made by participants in RA Prediction, we regressed

the participant prediction score on the risk assessment’s prediction score to determine how participant perfor-

mance depends on model performance. In both cases the slope was close to 1 (1.14 in pretrial, 0.98 in loans)

and was significant with p < 10−15. In the pretrial setting, Update was equivalent to RA Prediction with a risk

assessment that performs 0.91% better than the actual risk assessment while Feedback was equivalent to RA Pre-

diction with a risk assessment that performs 2.52% worse (a range of 3.43%). In the loans setting, Update was

equivalent to RA Prediction with a risk assessment that performs 1.35% better than the actual risk assessment
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while Feedback was equivalent to RA Prediction with a risk assessment that performs 2.91% worse (a range of

4.26%).

We observed several patterns that can partially account for the different performance levels observed. The

average participant prediction score in each treatment was closely related to the rate at which participants matched

their prediction to the risk assessment’s prediction: the more often participants in a treatment followed the risk

assessment’s advice, the better the average participant prediction score in that treatment (p = 0.012 in pretrial,

p = 0.055 in loans).

Although we were unable to ascertain clear explanations for why participants matched the risk assessment at

different rates in every treatment, a striking pattern emerged in the Feedback treatment, which had by far the

lowest match rate in both settings: the match rate declined drastically after the first prediction. In the pretrial

setting, for example, the match rate of the first prediction in Feedback was 42.9%, whereas the match rate

for the following 39 predictions ranged between 22.9% and 31.4% (average=26.4%). This was due to a shift in

participant predictions toward the extremes (0% and 100%). For instance, the rate at which participants predicted

0% risk increased by a factor of 1.8 and 2.8 after the first prediction in the pretrial and loans settings, respectively.

This indicates that many participants responded to the feedback presented after the first prediction (this feedback

was necessarily binary, since the outcome either did or did not occur) by treating their own predictions as binary.

This change in behavior led to a decrease in the performance of participants in the Feedback treatment.

We further analyzed the Update treatment by evaluating the quality of participants’ initial predictions, which

they made before being shown the risk assessment for that case. Surprisingly, despite making predictions under

the same condition as participants in Baseline, participants’ initial predictions in Update outperformed the pre-

dictions made in Baseline (pretrial: 0.772 vs. 0.750, p < 10−5; loans: 0.799 vs. 0.757, p < 10−14). This appeared

to be due to the risk assessment serving a training role for participants: the initial predictions in Update improved

over the course of the 40 predictions in the pretrial setting4 (p = 0.015) and exhibited a sharp improvement after

4In only one other treatment across the two settings did participant performance improve statistically significantly over
time.
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the first prediction in the loans setting, suggesting that being shown an algorithm’s prediction about some cases

can help people make more accurate predictions about future cases. The final predictions in Update, made with

the benefit of the risk assessment’s advice, provided further improvement over the initial predictions (pretrial:

0.782 vs. 0.772, p = 0.014; loans: 0.813 vs. 0.799, p = 0.002). These results suggest that the improvement

produced by the Update treatment was twofold: first, it trained participants to make more accurate predictions

in general, and second, it provided the risk assessment’s prediction for the particular case at hand.

4.4.2 Desideratum 2 (Reliability)

Desideratum 2 states that people should accurately evaluate their own and the algorithm’s performance and

should calibrate their use of the algorithm to account for its accuracy and errors. This principle involves two

components: first, the ability to evaluate performance, and second, the ability to calibrate a decision based on

the algorithm’s performance. We found that participants could not reliably exhibit either of these behaviors in

any treatment.

Evaluation

We assessed whether participants could evaluate their own and the risk assessment’s performance by comparing

participant exit survey responses to the actual behaviors that they exhibited and observed (Table ??). Participants

were asked to respond to each question on a Likert scale from “Not at all” (1) to “Extremely” (5).

To measure perceptions of their own performance, all participants were asked “How confident were you in

your decisions?” We evaluated whether participants’ self-reported confidence in their performance was related

to their actual performance. The average participant confidence was 3.1 in pretrial and 3.2 in loans. Within each

treatment in both settings, we regressed confidence on performance, controlling for each participant’s demo-

graphic information and exit survey responses, along with the risk assessment’s performance (Table ??). Across

both settings, the only statistically signifiant relationships between a participant’s confidence and performance
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emerged as negative negative associations in Default and Update in loans (p = 0.03 and p = 0.047, respec-

tively). In none of the treatments could participants reliably evaluate their performance, in some cases actually

performing less well as they became more confident.

To measure participant evaluations of the risk assessment’s performance, we asked every participant who was

shown the risk assessment “How accurate do you think the risk score algorithm is?” and analyzed whether

participant responses reflected the risk assessment’s accuracy.5 The average report of algorithm accuracy was 3.1

in pretrial and 3.3 in loans. Within each treatment in both settings, we regressed the participant evaluations of

the risk assessment’s accuracy against the risk assessment’s actual performance, controlling for each participant’s

performance, demographic information, and exit survey responses (Table ??). In the Update treatment in both

settings (p = 0.04 in pretrial and p < 10−3 in loans) and in the Default treatment in loans (p = 0.01), participant

evaluations of the risk assessment were negatively associated with the risk assessment’s actual performance. In

no treatment or setting were participants able to accurately evaluate the risk assessment’s performance.

Calibration

To evaluate whether participants calibrated their use of the risk assessment to the risk assessment’s performance,

we compared the influence of the risk assessment on each prediction (Equation 4.2) with the quality of the risk

assessment’s predictions. Within each treatment, we regressed the risk assessment’s influence on each participant

prediction on the risk assessment’s score for that prediction (Table ??). Across all settings and treatments, only

the Explanation treatment in the loans setting had a positive and statistically significant relationship in which

people relied more strongly on the risk assessment as its performance improved (p = 0.006); in pretrial, however,

Explanation, RA Prediction, and Feedback had a negative relationship in which people relied less strongly on

the risk assessment as its performance improved (p ≤ 0.04). In the six other treatments across the two settings,

5Although all participants were presented with predictions from the same model, each participant was presented with
a different set of 40 predictions. As a result of this variation, each participant observed a different level of risk assessment
quality.
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Confidence RA Accuracy Calibration
Pretrial Loans Pretrial Loans Pretrial Loans

RA Prediction 0 0 0 0 - 0
Default 0 - 0 - 0 0
Update 0 - - - 0 0
Explanation 0 0 0 0 - +
Feedback 0 0 0 0 - 0

Table 4.4: Summary of participant abilities to evaluate performance (first two columns) and to calibrate their predictions

(thirdcolumn). Thecolumnsmeasure the relationshipsbetweenbetweenparticipant confidenceandactualperformance

(Confidence), participant estimates of the algorithm’s performance and its actual performance (RA Accuracy), and par-

ticipant reliance on the risk assessment and the risk assessment’s performance (Calibration). + signifies a positive and

statistically significant relationship, - signifies a negative and statistically significant relationship, and 0 signifies no sta-

tistically significant relationship. In all cases, + means that the desired behavior was observed.

participants did not differentiate their reliance on the risk assessment based on how it actually performed.

4.4.3 Desideratum 3 (Fairness)

Desideratum 3 states that people should interact with the algorithm in ways that are unbiased with regard to race,

gender, and other sensitive attributes.

To assess whether this desideratum was satisfied, we analyzed if any “disparate interactions” emerged in the

various treatments. Because Desideratum 3 concerns bias with respect to sensitive attributes and the loans data

did not contain any such attributes about applicants, we applied this analysis only in the pretrial setting. We ana-

lyzed disparate interactions along two framings: first, comparing the risk assessment’s influence on participants

when making predictions about Black and white defendants, and second, comparing the participant deviations

from the risk assessment when making predictions about Black and white defendants. In both cases, we found

that every treatment exhibited disparate interactions and that the Update treatment yielded the smallest disparate

interactions.
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Influence of the risk assessment

For each treatment, we compared the influence of the risk assessment on predictions about Black and white

defendants (Equation 4.3). We broke down the analysis based on whether the risk assessment’s prediction was

greater or less than the average Baseline participant prediction for that defendant (ri > bi and ri < bi, respectively).

In cases where ri > bi, the risk assessment exerted a larger influence to increase risk on predictions about

Black than white defendants in every treatment (Figure 4.3). These differences were statistically significant in

three of the five treatments: RA Prediction (p = 0.001), Update (p < 10−4), and Feedback (p = 0.02). The

largest disparities of 0.38 occurred in Feedback and RA Prediction; in the latter, for example, the influence

for Black defendants was 0.50 (meaning that participants equally weighed their own and the risk assessment’s

judgments) and the influence for white defendants was 0.12 (meaning that participants only slightly considered

the risk assessment’s judgments). The smallest disparity of 0.07 occurred in Update. Thus, although the RA

influence disparity> was positive in Update, the disparity was reduced by 81.5% compared to RA Prediction.

The inverse pattern emerged in cases where ri < bi: in every treatment, the risk assessment exerted a greater

influence to reduce risk when participants were evaluating white defendants. The discrepancies between Black

and white defendants were reduced, however, and were significant only in the Update treatment, which had a

disparity of 0.05 (p = 0.02).

Deviation from the risk assessment

For each treatment, we compared the extent to which participants deviated from the risk assessment when

making predictions about Black versus white defendants (Equation 4.4). In every treatment, participants on

average deviated positively (toward higher risk) for Black defendants and negatively (toward lower risk) for white

defendants. Aside from Update (p = 0.053), these deviation disparities were statistically significant in every

treatment (p < 10−6). The largest gap in average deviations (of 4.1%) came in Feedback, where the average

deviation was +1.3% for Black defendants and -2.8% for white defendants. The smallest disparity (of 0.6%)
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came in Update, where the average deviation was +0.4% for Black defendants and -0.2% for white defendants.

Compared to RA Prediction, which had a disparity of 2.3%, Update reduced the Deviation disparity by 73.9%.

4.5 Discussion

This study explored the normative and empirical dimensions of algorithm-in-the-loop decision-making, with a

focus on risk assessments in pretrial adjudication and financial lending. We first posited three desiderata as essen-

tial to facilitating accurate, reliable, and fair algorithm-in-the-loop decision-making. We then ran experiments to

evaluate whether people met the conditions of these principles when making decisions with the aid of a machine

learningmodel. We studied how people made predictions in two distinct settings under six conditions—including

four that follow proposed approaches for presenting risk assessments—and found that only the desideratum re-

lated to accuracy was satisfied by any treatment. No matter how the risk assessment was presented, participants

could not determine their own or the model’s accuracy, failed to calibrate their use of the model to the quality

of its predictions, and exhibited disparate interactions when making predictions.

These results call into question foundational assumptions about the efficacy and reliability of algorithm-in-

the-loop decision-making. It is often assumed that, because risk assessments are merely decision-making aids,

the people who make the final decisions will provide an important check on a model’s predictions [514, 243, 291].

For example, in State v. Loomis, the Wisconsin Supreme Court mandated that COMPAS should be accompanied

by a notice about the model’s limitations and emphasized that staff and courts should “exercise discretion when

assessing a COMPAS risk score with respect to each individual defendant” [514]. But such behavior requires

people to evaluate the quality of predictions and to calibrate their decisions based on these evaluations—abilities

that our findings indicate people do not reliably possess. That assumptions about human oversight are so central

to risk assessment advocacy and governance is particularly troubling given the inability of algorithms to reason

about novel or marginal cases [11]: people may make more accurate predictions on average when informed by

70



an algorithm, but they are unlikely to recognize and discount any errors that arise. Even when people are making

the final decisions, using a risk assessment may reduce the capacity for reflexivity and adaptation within the

decision-making process. These concerns are particularly salient given the persistence of disparate interactions

across all of our experimental treatments.

The first step toward remedying these issues is to further develop criteria that should govern algorithm-in-

the-loop decision-making. If society is to trust the widespread integration of machine learning models into

high-stakes decisions, it must be confident that the decision-making processes that emerge will be ethical and

responsible. Rather than emphasizing only those values which technology is capable of promoting (such as

accuracy), society must evaluate technology according to a full slate of normative and political considerations,

paying particular attention to the technology’s downstream implications [191, 194]. Despite providing initial

steps in this direction, the three desiderata proposed here are not comprehensive and may not even be of primary

concern in certain contexts. Our three desiderata do not capture broader considerations such as whether the

context of a decision is just and whether it is appropriate to incorporate algorithmic advice into that context at

all. Existing theories of justice must be more thoroughly adapted to algorithm-in-the-loop decision-making and

to the contexts in which these decisions arise.

Another important step will be to develop a deeper science of human-algorithm interactions for decision-

making. Although debates about risk assessments have centered on the statistical properties of the models

themselves [17, 130], we found that varying risk assessment presentation and structure affected the accuracy of

human decisions to an extent equivalent to altering the underlying risk assessment accuracy by more than 4%.

The relative performance of each treatment was similar across two distinct domains, suggesting that our results

may reflect general patterns of human-algorithm interactions. But while we were able to explain some of the dif-

ferences in treatment performance, we lack a comprehensive understanding of how risk assessment presentation

affected people’s behaviors. Notably, we found several counterintuitive results that challenge assumptions about

how to improve human-algorithm interactions. Although it is commonly assumed that providing explanations
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will improve people’s ability to understand and take advantage of an algorithm’s advice [148, 137, 417], we found

that explanations did not improve human performance, a result that accords with prior work [400, 357]. We also

found, counterintuitively, that providing feedback to participants significantly decreased participant accuracy (in

one setting leading to predictions that were no better than those made without the advice of a risk assessment

at all) and exacerbated disparate interactions.

More broadly, evaluations of algorithm-in-the-loop decision-making should consider not just the quality of

decisions (the focus of this study) but also how working with an algorithm can change one’s perceptions of the

task itself. The presentation of models can shape people’s responses to the predictions made, prompting people

to focus on the predictive dimensions of a complex decision and suggesting particular assumptions. For example,

predictive policing systems have prompted police to alter their focus while on patrol [45, 238] and are sometimes

displayed in a manner that could exacerbate a militaristic police mindset [194].

The presentation and structure of an algorithm could also diminish someone’s sense of moral agency when

making predictions. Prior work has found that using automated systems can generate a “moral buffer” that

prompts people to feel less responsible and accountable for their actions [112]. For behavior within algorithm-

in-the-loop settings to be reliable and accountable, it is essential that human decisionmakers feel responsibility for

their actions rather than deferring agency to the computer. As a corollary, in the face of “moral crumple zones”

that place undue responsibility on the human operators of computer systems rather than on the creators of those

systems [149], the people developing algorithmic decision aids must feel responsibility and be accountable for

how their design choices affect the final decision makers’ actions.

With these considerations in mind, an important direction of future work will be to develop design principles

for algorithms—as well as for the social and political contexts in which they are embedded—to promote reliable,

fair, and accountable decision-making. Given that only the accuracy desideratum was satisfied even when various

interventions were tested, a great deal of work is clearly required to promote the full slate of desired behaviors.

Such work requires a fundamental shift in algorithmic practice that begins with expanding the goals of develop-
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ment and evaluation to include considerations beyond model accuracy. Producing algorithms for use in social

contexts means not just designing technology, but designing sociotechnical systems in which human-algorithm

interactions, governance, and political discourse are all as central to the outcomes as the model predictions them-

selves. A thorough understanding of how each of these factors affects the impacts of algorithms is essential to

building sociotechnical systems that can reliably produce ethical outcomes.

This study was hindered by the limits of its methodology and scope. Our experiments abstracted human

decision-making into a series of prediction tasks, thus potentially overstating the importance of accuracy and

removing many other important factors from consideration. In the U.S. criminal justice system, for instance,

decisions must satisfy due process and equal protection, meaning that defendants must have the right to hear

and challenge claims against them, that rules based on accurate statistical generalizations are often rejected in

favor of treating people like individuals, and that decisions must be made without discriminatory intent. Because

these considerations were not captured by our experimental task or evaluation metrics, experiments such as

ours—by nature of how they are designed—fail to provide a holistic evaluation of risk assessments’ merits and

flaws. Thus, even as future work further develops principles and methods for ethical algorithm-in-the-loop

decision-making, it is necessary to retain a focus on the broader questions of justice that surround human-

algorithm interactions and algorithmic policy interventions. The next chapter provides a first step toward this

broader approach, extending this experimental algorithm-in-the-loop methodology to explore human decisions

rather than only human predictions.
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Figure 4.1: Examples of the prompts presented to participants in two of the six treatments. The top example is from

the Default treatment (note that the “40%” bubble is already filled in, following the risk assessment’s prediction) in the

pretrial setting, while the bottom example is from the Explanation treatment in the loans setting.
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Figure4.2: The relativeperformancegain (Equation4.1) achievedbyeachexperimental conditionacross thepretrial and

loans settings. In both settings, theUpdate treatment performed statistically significantly better thanRAPrediction and

the Feedback treatment performed statistically significantly worse. Across the two settings, the gain of the conditions

was highly correlated.
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Figure 4.3: The disparate interactions present in each treatment in the pretrial setting, measured by the disparities in

risk assessment influence (Equation 4.3) and in participant deviations (Equation 4.4) for Black versus white defendants.

In both cases, values closer to 0 indicate lower levels of bias. The Update treatment yielded the smallest disparate inter-

actions along bothmetrics, reducing the disparities (compared to RA Prediction) by 81.5% and 73.9%, respectively.
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Chapter 5

AlgorithmicRiskAssessments CanDistortHu-

manDecision-Making inHigh-StakesGovern-

ment Contexts

5.1 Introduction

Although claims about the benefits of public sector risk assessments tend to directly compare humans and al-

gorithms [275] and to emphasize the benefits of algorithms improving predictions [276], in practice algorithmic

predictions are used by people to make complex decisions such as whether to release or detain criminal defen-

dants before their trials. Determining whether risk assessments improve policy outcomes therefore requires

understanding how these algorithms affect human decision-making.

We categorize the influence of risk assessments into four “settings” based on their effects on predictions and

decisions, as summarized in Table 5.1. Setting 1 represents the baseline condition without any risk assessment
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Decision-making process
unaffected by RA

Decision-making process af-
fected by RA

Prediction-making process
unaffected by RA

Setting 1 (RA does not affect
prediction-making or decision-
making processes)

Setting 2 (RA affects only
decision-making process)

Prediction-making process
affected by RA

Setting 3 (RA affects only
prediction-making process)

Setting 4 (RA affects both
prediction-making and
decision-making processes)

Table 5.1: The four possible “settings” of how prediction-making and decision-making can be affected by a risk assess-

ment (RA). Setting 1 represents a baseline process inwhich both prediction-making and decision-making are unaffected

by a risk assessment. Settings 2-4 represent the possible conditions when decision-makers are presented with and af-

fectedbya risk assessment. Setting3 represents the scenario inwhich risk assessments influenceprediction-makingbut

not decision-making; while decisions may differ in Setting 3 compared to Setting 1, this would be due to shifts in predic-

tions rather than to shifts in how people make decisions as a function of predictions. Given extensive evidence that risk

assessments affect human predictions, Setting 2 is relatively implausible.

and Settings 2-4 represent the possible conditions that could result when decision-makers are presented with

and influenced by a risk assessment.

In response to concerns about government use of algorithms to make consequential decisions, lawmakers and

other officials typically state that risk assessments merely provide accurate predictions to aid human decision-

makers, who retain autonomy and discretion to make final decisions [154, 361, 514, 460]. This response assumes

that risk assessments improve predictions of risk and thus ground decisions in better information, but do not

alter the decision-making process itself (this would represent a shift from Setting 1 to Setting 3). Yet recent

research indicates that risk assessmentsmay also alter decision-making in unintended and often harmful ways (this

would represent a shift to Setting 4). For instance, contrary to expectations, the use of pretrial risk assessments

has exacerbated racial disparities in pretrial detention, in part because judges make more punitive decisions in

response to risk predictions when evaluating Black defendants [8, 107, 464, 466]. Experimental evidence has also

demonstrated that risk assessments prompt judges and law students to prioritize reducing risk relative to other

considerations when making sentencing decisions [451, 460]. Such evidence suggests that risk assessments may

unexpectedly alter how fundamental conceptions of justice are applied in practice.
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In this study we use an online experiment to test whether risk assessments merely provide accurate predictions

to aid human decision-makers (Setting 3), as is commonly asserted, or also alter decision-making itself (Setting 4)

in two high-stakes public sector settings: 1) a pretrial setting where decisions about whether to release or detain

criminal defendants before their trial depend in part on the risk that defendants would fail to appear in court for

trial or would be arrested before trial, and 2) a loans setting where decisions about whether to approve or reject

applications for government home improvement loans depend in part on the risk that applicants would default

on the loan.

Based on evidence that framing decisions around losses more strongly motivates decision-makers (including

judges) to avoid those losses [410, 442, 485, 259], we hypothesize that people presented with the predictions of

risk assessments, which emphasize the risk of particular adverse outcomes, will place more emphasis on reducing

risk when making decisions. Such a shift in decision-making would be notable for two primary reasons. First,

unlike an improved capacity for predicting risk, an increased emphasis on reducing risk in government decision-

making amounts to a shift in public policy, yet would occur here as a byproduct of adopting a technical tool rather

than through a democratic policymaking process. Second, because “risk” is intertwined with legacies of racial

discrimination in both the criminal justice (see Chapter 8) and loans [274] settings studied here, more heavily

basing decisions on risk can exacerbate racial disparities in punishment and government aid.

5.2 Methods

5.2.1 Study Design

See Section 2.4 for the full details of the study design. Here, I describe the elements of this experiment that are

particular to this study.
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Sample
N=300

Black
N=189

White
N=111

Background
Male 86.7% 88.4% 83.8%
Black 63.0% 100.0% 0.0%
Mean age at arrest 28.1 27.1 29.8
Drug crime 49.3% 50.8% 46.8%
Property crime 30.3% 28.0% 34.2%
Violent crime 14.0% 14.3% 13.5%
Public order crime 6.3% 6.9% 5.4%
Has prior arrests? 64.7% 73.5% 49.5%
Mean number of prior arrests 4.3 5.0 3.1
Has prior convictions? 50.0% 57.7% 36.9%
Mean number of prior convictions 2.4 2.9 1.7
Has prior failure to appear? 31.7% 34.4% 27.0%

Outcomes
Rearrest 19.0% 20.1% 17.1%
Failure to appear 25.3% 29.6% 18.0%
Violation 36.0% 39.2% 30.6%

Table 5.2: Summary statistics for the 300 defendants presented to participants. See Table 2.1 for the attributes of the

full data sample.

Data and Risk Assessments

The 300-person samples of defendants and applicants presented to participants in experiments are described in

Table 5.2 and Table 5.3. In the loans setting, we restricted our analysis to loans that were issued specifically for

home improvements between 2007 and 2018, which represents 6.7% of the total issued loans (the third most

common purpose, following debt consolidation and paying off credit cards). This yielded a dataset of 45,218

issued home improvement loans. The average loan was for $14,556.38; the average applicant had an income of

$95,262.88 and a credit score of 707.5 (categorized by FICO as “Good”). More than 80% of these loans were

fully paid.
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All
N=45,218

Sample
N=300

Applicant
Mean annual income $95,262.88 $93,349.22
Mean credit score 707.5 705.9
Has “good” credit score? 65.7% 64.3%
Has mortgage? 83.9% 83.0%

Loan
Mean loan amount $14,556.38 $14,076.00
Mean months to pay off loan 42.4 42.6
Mean monthly payment $435.75 $419.49
Mean interest rate 13.0% 13.2%

Outcome
Loan paid off 83.2% 84.7%
Loan defaulted on 16.8% 15.3%

Table 5.3: Attributes of full sample of home improvement loans that were approved and the 300-loan sample presented

to participants in experiments.

Experiment Setup

The experiment followed a 2x2x2 design, with splits along the following three dimensions (Figure 5.1):

• Pretrial release setting (50% of participants) vs. government home improvement loans setting (50%).

• Not presented with risk assessment (50%) vs. presented with risk assessment (50%). This is our primary

experimental treatment.

• Decisions (75%) vs. predictions (25%).

Participants in the pretrial setting were required to make decisions or predictions about criminal defendants

who have been arrested and are awaiting trial (Figure 5.2). Participants making decisions were tasked with choos-

ing whether to detain or release 30 criminal defendants before their trials; participants making predictions were

tasked with estimating the likelihood that 40 criminal defendants would (if released) be rearrested before trial or

fail to appear in court for trial. Participants in the loans setting were required to make decisions or predictions
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Participant

Control: Not 
Shown RA

Treatment: 
Shown RA

Make 
Decisions

Make 
Predictions

Make 
Decisions

Make 
Predictions

50%

50%

75%

25%

75%

25%

Figure 5.1: The four conditions that participants were sorted into in each setting, with probabilities indicating the likeli-

hoods at each split. In each setting, every participant was sorted into one of the four terminal node scenarios. The first

split is our primary experimental treatment: whether or not people are presented with the risk assessment. The sec-

ond split enables us to estimate the perceived risk estimates of decision-makerswithout confounding the experiment by

directly asking them to make predictions. In order to account for the effect of the risk assessment on predictions, the

perceived risk measured for decisions in the control group are based only on predictions made in the control group and

the perceived risk measured for decisions in the treatment group are based only on predictions made in the treatment

group. Participants in all four scenarios were presentedwith the same set of 300 defendants or applicants.

about people who have applied for home improvement loans. Participants making decisions were tasked with

choosing whether to approve or reject 30 loans; participants making predictions with tasked with estimating the

likelihood that 40 loan applicants would (if granted a loan) default on their loans. In both settings, participants

were presented with the narrative profiles of subjects drawn from the 300-person sample populations.

Because participant decisions are informed by their estimates of each defendant’s or applicant’s risk, we needed

a measure of participants’ estimates of risk about each subject. We could not directly ask participants making

decisions for their estimates of risk, as doing so could prime them to consider risk, confounding the effect

of showing the risk assessment. We therefore further split participants such that 25% were asked to make

predictions of risk about 40 subjects drawn from the pools of 300 defendants or applicants (Figure 5.1).

We used these prediction-making participants to estimate the “perceived risk” of the decision-making par-
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A       Pretrial

B       Loans

Figure 5.2: Examples of the prompts presented to participants. (A) A profile presented to a decision-making participant

in the pretrial setting. (B) A profile presented to a prediction-making participant in the loans setting. Both of these exam-

ples are for participants in the treatment group; participants in the control group saw the same prompt, but without the

section about the risk assessment.
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ticipants about each subject. Because estimates of risk can be altered by risk assessments, we calculated these

averages only from participants who were subject to the same risk assessment treatment as the decision-maker.

That is, perceived.riski,r = avg(predictioni,r|I = i,R = r), where i is the index of the defendant or applicant in

question and r is a binary indicator for whether or not the risk assessment was shown. Thus, for instance, the

perceived risk for a decision about a defendant made without the risk assessment is the average of risk predictions

for that same defendant made without the risk assessment.

After making predictions or decisions, participants were asked to answer several questions about their behav-

iors and beliefs on a 7-point Likert scale. Because people are often unaware of how particular stimuli affected

their behavior [362] and are subject to social desirability bias [163], many of the exit survey questions were phrased

indirectly, using the projective viewpoint, which has been shown to yield more accurate reports of behaviors and

beliefs than direct questioning [163, 164].

5.2.2 Analysis

Predictions

We evaluated the quality of each prediction using an inverted Brier score bounded between 0 (worst possible

performance) and 1 (best possible performance).

Wemeasured how participantsmade predictions using Bayesian linear regression (we used a Bayesian approach

for consistency with the next section, where Bayesian regression enabled analysis based on posteriors; in all

cases the inferences made from Bayesian and non-Bayesian regressions were almost identical). We implemented

models with the brms package in R [67], which provides a high-level interface to Markov Chain Monte Carlo

(MCMC) sampling for Bayesian inference using Stan [70]. In both settings we regressed the average prediction

about each subject (both with and without the risk assessment) on the factors presented to participants in the

narrative profiles along with interactions between those factors and whether the risk assessment was shown. To
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account for repeated samples of subjects (about whom risk predictions were measured both with and without

the risk assessment), the model also included random effects for the subject identity. This approach allowed us

to measure the influence of subject attributes and the risk assessment on the average risk prediction about each

subject.

perceived.risk ∼ race+ gender+ age+ offense.type+ number.prior.arrests

+ number.prior.convictions+ prior.failure.to.appear+ show.RA

+ race ∗ show.RA+ gender ∗ show.RA+ age ∗ show.RA+ offense.type ∗ show.RA

+ number.prior.arrests ∗ show.RA+ number.prior.convictions ∗ show.RA

+ prior.failure.to.appear ∗ show.RA+ (1|subject)

(5.1)

perceived.risk ∼ income+ fico.category+ own.home+monthly.installment

+ interest.rate+ loan.amount+ loan.term+ show.RA

+ income ∗ show.RA+ fico.category ∗ show.RA+ own.home ∗ show.RA

+monthly.installment ∗ show.RA+ interest.rate ∗ show.RA+ loan.amount ∗ show.RA

+ loan.term ∗ show.RA+ (1|subject)

(5.2)

We initialized models with uninformative priors and implemented sampling using 4 chains with 1000 iterations,

following 1000 burn-in iterations on each chain. All coefficients in both models returned R̂ = 1.00, indicating

that the chains were well-mixed and have converged to a common distribution. We estimated statistical sig-

nificance from the samples using the probability of direction measure and obtaining the equivalent frequentist

p-value [321, 320]. These coefficients and p-values are very similar to what is obtained by fitting these same
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regressions using non-Bayesian linear regression.

Decisions

We evaluated the relationship between risk predictions and decisions using Bayesian mixed-effects logistic re-

gression, implemented in brms [67]. We treated predictions of risk as a key input to decisions about whether to

detain defendants and reject loan applications [190]. In both settings, each decision made by a participant was

regressed on the average risk prediction about the subject in question, whether the risk assessment was shown,

and the interaction between these two factors. To account for repeated samples, the model also included random

effects for the participant identity, the subject identity, and the index (1–30) marking the participant’s progress

in the experiment. Because these risk predictions have already accounted for the specific attributes of each sub-

ject and because we did not directly measure each decision-making participant’s estimates of risk, we did not

include subject attributes within this regression formula. This formula allows us to measure decision-making as

a function of risk estimate.

Recall that to avoid priming participants to focus on risk, we did not ask participants making decisions for

their estimate of each subject’s risk. Instead, we used the predictions made by other participants to provide an

estimate of how each decision-making participant perceived the risk of each subject. Because we had participants

making predictions and decisions both with and without the risk assessment, we accounted for the effect of the

risk assessment on predictions by calculating average predictions made both with and without the risk assessment.

Thus, for decisions made with/without the risk assessment, perceived.risk measures the average prediction made

about the same subjects with/without the risk assessment. The perceived.risk measurements are based on an

average of 18.13±4.00 participant predictions about each subject in each treatment (RA or no-RA), with an

average standard deviation in risk predictions of 21.85±6.64 and an average standard error of 5.21±1.70 (these
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values are almost identical across the two settings).

decision ∼ perceived.risk+ show.RA+ perceived.risk ∗ show.RA

+ (1|participant) + (1|subject) + (1|progress.idx)
(5.3)

If risk assessments simply present information that improves human estimates of risk (Setting 3), we would

expect to see that, conditioned on a given level of perceived risk, the risk assessment does not alter decisions.

In this case, both regression factors that include show.RA would be nonsignificant. Yet if risk assessments also

influence decision-making (Setting 4), we would expect to see that people are more attentive to reducing risk

when making decisions. This result could emerge through two different effects: 1) participants being more

risk-averse at all levels of risk (in this case, the show.RA factor would be positive), or 2) participants being more

sensitive to increases in risk (in this case, the perceived.risk ∗ show.RA factor would be positive).

We initialized models with uninformative priors and implemented sampling using 4 chains with 1000 iterations,

following 1,000 burn-in iterations on each chain. In both models, all fixed effect coefficients returned R̂ = 1.00

and all random effect coefficients returned R̂ ≤ 1.01, indicating that the chains were well-mixed and have

converged to a common distribution. We estimated statistical significance from the samples using the probability

of direction measure and obtaining the equivalent frequentist p-value [321, 320]. The coefficients and p-values

are very similar to what is obtained by fitting these same regressions using standard logistic regression.

To obtain the estimated values (and standard deviations) of the fitted decision functions we took all 4,000

posterior samples of the fixed effect coefficients from the fitted model. We then used each set of coefficients

to calculate the rate of detaining defendants or rejecting loan applicants at each level of risk from 0% to 100%

(in intervals of 0.1%) both with and without the risk assessment. We also used these posterior estimates for the

fitted decision rates to determine, at each level of risk, the shifts in negative decision rates caused by the risk

assessment.
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5.2.3 Simulations

Because participants in our experiments either were or were not exposed to the risk assessment, what we observed

in the experiments was the results of Settings 1 and 4: people whose predictions and decisions were subject to the

same stimuli. Estimating the effect of the shifts in decision-making requires disentangling the risk assessments’

effects on predictions and on decisions. This means comparing Settings 3 and 4 to determine how the changes

in decision-making caused by the risk assessments affect outcomes conditioned on making predictions using the risk

assessment.

We used simulations to distinguish the effects of changes in predictions and changes in decision-making due

to the risk assessments. This meant simulating outcomes in the four settings described in Table 5.1. First,

we used data from the experiments to learn prediction and decision functions both with and without the risk

assessments. We estimated the outcomes in all four settings described in Table 5.1 by applying these models

in various combinations to a large sample of defendants and loan applicants (e.g., we estimated the results in

Setting 3 by simulating predictions “with” the risk assessment and then simulating decisions “without” the risk

assessment; because the decision function depends in part on predicted risk, we treat the prediction function

output as an input to the decision function). We then ran 1,000 trials simulating the outcome for each subject in

each of these four settings.

Fitting Prediction and Decision Models

We began by learning the prediction and decision functions that explain the average risk predictions and negative

decision rates for each defendant and loan applicant. For predictions, we used Equations S1 and S2, modeling

the average risk prediction about each subject based on all seven attributes of that subject that were visible to

participants as well as the interactions between those attributes and whether the risk assessment was shown. We

used a similar formula for decisions, in this case modeling the negative decision rate about each subject using
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the same factors as in the predictions model while also adding the average risk prediction about that subject and

the interaction between that prediction and whether the risk assessment was shown:

detention.rate ∼ perceived.risk+ race+ gender+ age+ offense.type+ number.prior.arrests

+ number.prior.convictions+ prior.failure.to.appear+ show.RA

+ perceived.risk ∗ show.RA+ race ∗ show.RA+ gender ∗ show.RA

+ age ∗ show.RA+ offense.type ∗ show.RA+ number.prior.arrests ∗ show.RA

+ number.prior.convictions ∗ show.RA+ prior.failure.to.appear ∗ show.RA

(5.4)

rejection.rate ∼ perceived.risk+ income+ fico.category+ own.home+monthly.installment

+ interest.rate+ loan.amount+ loan.term+ show.RA

+ perceived.risk ∗ show.RA+ income ∗ show.RA+ fico.category ∗ show.RA

+ own.home ∗ show.RA+monthly.installment ∗ show.RA+ interest.rate ∗ show.RA

+ loan.amount ∗ show.RA+ loan.term ∗ show.RA

(5.5)

We fit all models using generalized linear regression with a logit link function from the “quasibinomial” family.

We use this quasibinomial approach because the fitted value of all regressions is a probability (either a risk

prediction or negative decision rate that ranges from 0%-100%) rather than a binary outcome. Although linear

regression yields very similar results to what is described below, it does not guarantee that predicted values on

new data will be bounded [0,1].

We used leave-one-out cross validation to test the effectiveness of this approach on out-of-sample data. Recall

that we had a sample of 300 subjects in each setting, with predictions/decisions about that subject both with
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and without the risk assessments, for a total training set of 600 data points. We removed predictions/decisions

about one subject at a time, trained the model on the data about the other 299 subjects, and estimated the predic-

tion/decision that would be made about the held-out subject both with and without the risk assessment. In this

manner we obtained out-of-sample predictions about the full set of data to evaluate. We tested the prediction

and decision models independently (i.e., using the empirical average predictions as input for the decision func-

tions) before testing the full pipelines (in which the estimated risk predictions are used as input for the decision

functions).

The mean average error (MAE) on the full pipeline is 5.92 (RMSE=7.46) in the pretrial setting and 7.33

(RMSE=9.95) in the loans setting. In both settings the performance of the full pipeline decisions model is

similar to that of the independent decisions model. All the models are unbiased estimators, with mean errors

close to 0.

We then fit prediction and decision models for both settings on the full set of 300 subjects, for use in our

simulations.

Predictions on New Subjects

We applied these models to a large, representative set of subjects that were not shown to participants in the

experiments: the held-out validation sets from both settings that were described in Section 1.2 (not including

the 300 subjects that were sampled for inclusion in our experiments). These samples represent approximately

10% of the full data in each setting and contain 4,375 defendants and 4,231 loan applicants drawn randomly

from the populations described in Tables S1 and S2. Both of these samples are representative of the full popu-

lation reflected in the datasets (recall that our 300-defendant sample was not fully representative due to privacy

restrictions).

These simulations proceeded as follows:

1. Apply the predictions model to duplicates of every subject, one in which the risk assessment is coded
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as not being shown and another in which the risk assessment is coded as being shown. This allows us

to obtain two estimated average risk predictions about each subject (one made “with” and one made

“without” the risk assessment).

2. Apply the decisions model to duplicates of every prediction about subjects, again with one decision in

which the risk assessment is coded as not being shown and another in which the risk assessment is coded

as being shown. For all of the predictions made “with” the risk assessment, for example, we estimated the

negative decision rates if decisions were made “with” or “without” the risk assessment. This process yields

four estimated negative decision rates for each subject, which are based on the four possible decision-

making processes: predictions and decisions are both made without the risk assessment, predictions are

made without the risk assessment but decisions are made with the risk assessment, predictions are made

with the risk assessment but decisions are made without the risk assessment, and predictions and decisions

are both made with the risk assessment.

3. Run 1,000 trials simulating the outcome for each subject based on the negative decision probabilities

estimated in Step 2. This allowed us to estimate the distribution of outcomes for the four decision-making

processes described above.

5.3 Results

5.3.1 2.1 COVID-19 Reliability Analysis

In order to ensure that any observed results would not be the effects of aberrant behavior during the COVID-

19 pandemic, immediately before running our main experiments in May 2020 we conducted a retest of a trial

experiment conducted in December 2019.

TheDecember 2019 trial closely resembled the experiments described Section 1. We recruited 240 participants
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from Mechanical Turk to evaluate a test sample of 100 criminal defendants. For the May 2020 trial we recruited

250 participants to evaluate the same set of 100 criminal defendants. We compared the results of these two

trials in order to determine whether people’s perceptions or behaviors in response to COVID-19 (or changes

in the population of Mechanical Turk workers) were likely to alter the results of our experiments. We focused

on three results central to our study: the demographics of participants in our experiments, the manner in which

participants made predictions of risk, and the manner in which participants made decisions about whether to

release or detain defendants.

Participant Demographics

The demographics of our study participants were similar across the two trials. In both cases, participants were

predominantly white (80.5% in 12/19 vs. 73.4% in 05/20), male (58.6% vs. 58.0%), and college educated (73.5%

vs. 70.2%). A logistic regression predicting which trial participants were part of, based on all of the demographic

attributes reported during the introductory survey, yielded no terms that were statistically significant.

Prediction Function

Among participants tasked with making predictions, we observed a high degree of consistency between the

predictions made across the two trials. The correlation between the average prediction made about each of

the 100 defendants was r(198)=+.94, p<.001. A two-sided t-test yielded no statistically significant difference

between the average prediction performance of participants across the two trials (0.751 vs. 0.753, p=.82).

We also estimated the function used by participants to predict the risk of each criminal defendant. Akin to our

analysis of predictions described below, we used a mixed-effects linear regression model to measure the average

risk prediction about each defendant, grouped based on whether or not the risk assessment was shown and

whether or not the prediction was made in the first (12/2019) or second (05/2020) trial. The model included

fixed effects for whether the risk assessment was shown, whether the predictions were made in the first or second
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trial, the attributes of defendants, and the interactions between these three sets of factors (up to three-way). We

also included a random effect for each defendant to account for the repeated predictions by each participant and

about each defendant. Overall, we observed minimal differences in the effect of these attributes on predictions

across the two trials. The trial number and the interaction between trial number and whether the risk assessment

was presented were not statistically significant. Only two of the interactions that included trial number were

statistically significant, as participants were slightly less responsive to prior failures to appear (P=.025) and prior

convictions (P=.039) in the second trial.

Decision Function

We also observed a high degree of consistency between the two trials among participants tasked with making

release/detain decisions about criminal defendants. The correlation between the average detention rate for each

of the 100 defendants was r(198)=+.97, p<.001.

We also estimated the function used by participants to decide whether to release or detain each criminal

defendant. Akin to the primary analysis of decisions described below, we used a mixed-effects logistic regression

model on all 8,070 decisions made across the two trials. The model included fixed effects for whether the

risk assessment was shown, the trial number, and the average prediction of risk about each defendant (in the

applicable treatment and trial number), with up to three-way interactions between these factors. We included

random effects for participants, defendants, and status in the experiment to account for repeated measurements.

None of the coefficients that included trial number were statistically significant, indicating that decision-making

did not notably differ across the December 2019 or the May 2020 trials.

Summary

In sum, we find high levels of test-retest reliability: the results found in May 2020 (in the midst of the COVID-19

pandemic) closely resembled the results found in December 2019, suggesting that our results are not merely the
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product of, nor notably influenced by, aberrant behaviors that arose in response to COVD-19. These results—

which indicate a high degree of consistency in Mechanical Turk participant predictions and decisions across

experiments separated by approximately 4.5 months—also indicate the reliability of our results more generally

as being reproducible upon repeated experimentation.

5.3.2 Participants

We conducted trials onMechanical Turk over the course of two weeks in May 2020. 2,685 participants completed

the experiments. Filtering out data from workers who failed at least one of the attention check questions in the

intro and exit surveys or who required more than four attempts to pass the comprehension test yielded 2,140

participants for our analysis.

The participant population is described in Table 5.4. Across both settings, a majority of participants were

male, white, and have completed at least a college degree. Measures of familiarity with certain topics, clarity

of the experiment, and how enjoyable the experiment was to complete are based on participant self-reports

measured on a Likert scale from 1 (low) to 7 (high).

5.3.3 Effect of Risk Assessments on Predictions

Presenting participants with the risk assessment improved prediction accuracy and reduced risk estimates (Fig-

ure 5.3). In the pretrial setting, the average participant prediction quality increased from 0.72 to 0.75 (P<.001,

d=0.11). A paired t-test comparing the average predictions of risk about each defendant finds that the risk as-

sessment reduced perceived risk by an average of 1.6% about each defendant (from an average 40.6% to 38.9%,

P=.001, d=0.19). While the reduction in perceived risk was significant for white defendants (38.4% to 35.7%,

P=.003, d=0.30), Black defendants received a smaller and nonsignificant reduction (41.7% to 40.7%, P=.085,

d=0.12). The improvement in prediction quality from showing the risk assessment was larger in the loans setting,

from 0.75 to 0.83 (P<.001, d=0.31). The risk assessment also altered predictions of risk more dramatically in
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Pretrial
N=1,040

Loans
N=1,100

Demographics
Male 59.8% 61.0%
Black 14.2% 11.9%
White 71.5% 72.9%
18-24 years old 7.4% 6.8%
25-34 years old 46.1% 45.0%
35-59 years old 43.0% 43.9%
60+ years old 3.6% 4.3%
College degree or higher 82.5% 81.9%
Criminal justice familiarity 5.1 5.1
Financial lending familiarity 4.9 5.1
Machine learning familiarity 4.7 4.8

Treatment
Decisions, no RA 39.2% 38.9%
Decisions, with RA 35.0% 36.0%
Predictions, no RA 13.3% 13.2%
Predictions, with RA 12.5% 11.9%

Outcomes
Average hourly wage $14.86 $15.16
Experiment clarity 6.4 6.4
Participant enjoyment 5.8 5.9

Table 5.4: Attributes of the participants in our experiments, by setting.

the loans setting, reducing the perceived risk for 92.3% of loan applicants, with an overall average reduction of

14.2% (from 38.5% to 24.3%, P<.001, d=1.54). These results are consistent with the prior two chapters.

The risk assessment also altered decisions in both settings, albeit in different directions. A paired t-test finds

that the risk assessment reduced each defendant’s likelihood of pretrial detention by an average of 2.4% (from

an average of 44.5% to 42.1%, P<.001, d=0.21). White defendants received a slightly larger average reduction

(38.7% to 35.9%, P=.014, d=0.24) than Black defendants (47.7% to 45.5%, P=.007, d=0.20). In the loans setting,

despite prompting significant reductions in risk predictions, the risk assessment nonsignificantly increased loan

rejection rates by an average of 1.0% per subject (from 22.1% to 23.1%, P=.159, d=0.08). This pattern of the

risk assessment reducing estimates of default risk but potentially increasing rejection rates in the loans setting
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Figure 5.3: Distributions of perceived risk about subjects, by risk assessment treatment. (A) Distributions in the pretrial

setting. (B) Distributions in the loans setting. Dotted lines indicate the average value in each treatment. The risk assess-

ment caused predictions of risk to decrease for 54.0%of defendants (59.8%ofwhites and 50.8%of Blacks) and 92.3%of

loan applicants.

indicates that reducing risk predictions does not directly translate to equivalent changed in decisions. Instead,

decisions are relatively inelastic to shifts in predictions in both settings: for instance, a 10% reduction in perceived

risk is associated with a 4.4% reduction in the pretrial detention rate and a 2.8% increase in the loan rejection

rate (Figure 5.4).

In both settings, the risk assessment improved prediction accuracy by by aligning people’s predictions more

closely with those of the risk assessments, prompting participants to adjust the risk they associated with certain

factors and to more strongly account for factors that participants without the risk assessment ignored (Table 5.5

and Table 5.6). In the pretrial setting, predictions of risk without the risk assessment were influenced primarily by

the type of crime for which the defendant was arrested, the defendant’s number of prior arrests (+0.72% risk for

each arrest), and whether the defendant had a previous failure to appear (+27.82%). The risk assessment induced

several shifts, most notably increasing the baseline prediction (+6.98%), prompting participants to consider the
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Figure 5.4: Shifts in predicted risk and negative decision rates for each subject caused by showing the risk assessment

to participants. (A) Pretrial setting. Results for Black andwhite defendants are pooled because they are very similar. (B)

Loans setting. Positive values on the x-axis indicate that the risk assessment increased the average risk prediction about

a subject. Positive values on the y-axis indicate that the risk assessment increased the detention or rejection rate about

a subject. Theblue lines indicate linear regressionfits of decision shifts versus prediction shifts. The intercept is negative

in thepretrial setting (–2.07, P=.002) andpositive in the loans setting (7.02, P<.001). The coefficients onprediction shifts

are less than 1 (0.23 in pretrial, P=.003; 0.42 in loans, P<.001), indicating that decisions are relatively inelastic to shifts

in predictions.

age of defendants (–0.20% risk for each year of age), and reducing the risk associated with prior failures to

appear (–7.43%). In the loans setting, predictions of risk without the risk assessment were influenced primarily

by the applicant’s annual income (–0.03% risk for every $1,000) and FICO score as well as the loan’s interest rate

(+0.33% for each percent interest). The risk assessment significantly reduced participants’ baseline prediction (–

24.02%), increased the salience of annual income (–0.02%) and interest rate (+0.50%), and prompted participants

to consider the length of the loan (+7.41% risk for a 60-month term). These shifts in both settings brought the

human predictions closer in line with how the risk assessmentmade predictions. Although the risk assessment did

improve prediction accuracy, people collaborating with the risk assessment underperformed the risk assessment

alone in both settings (P<.001).
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Not Shown RA Shown RA (interaction)

Intercept 27.88 (1.50) *** +6.98 (2.03) ***
White –0.03 (0.72) –0.98 (0.98)
Male 0.04 (0.91) –0.42 (1.25)
Age 0.03 (0.04) –0.20 (0.05) ***
Property crime –2.29 (0.74) *** +0.43 (1.04)
Public order crime –0.28 (1.59) –3.50 (2.21)
Violent crime 3.00 (0.95) *** –7.45 (1.27) ***
Number of prior arrests 0.72 (0.17) *** +0.20 (0.23)
Number of prior convictions 0.31 (0.17) . +0.09 (0.22)
Prior failure to appear 27.82 (1.33) *** –7.43 (1.76) ***

Table 5.5: Bayesian linear regression results estimating the average risk prediction about each defendant. Regressions

are based on the attributes of each defendant, whether the risk assessmentwas shown, and interactions between these

factors. The first column presents the coefficient of each factor and the second column presents the interaction of that

factor with the risk assessment. The shifts in prediction-making indicated here brought participant predictions closer in

linewith how the risk assessmentmade predictions. Parenthetical terms represent standard errors. . p<0.1; * p<0.05; **

p<0.01; *** p<0.001

5.3.4 Effect of Risk Assessments on Decisions

Our Bayesian mixed-effects logistic regressions indicate that the risk assessment increased participant attentive-

ness to risk when making decisions in both settings, thus demonstrating that risk assessments prompt a shift to

Setting 4 rather than Setting 3. In the pretrial setting, the risk assessment altered decisions by making partici-

pants more sensitive to increases in risk (Figure 5.5). This means that perceived risk more strongly influenced

whether defendants were released or detained: the risk assessment reduced pretrial detention rates for low levels

of perceived risk but increased pretrial detention rates for high levels of perceived risk. While a 10% increase

in perceived risk increased the odds of pretrial detention by a factor of 1.82 without the risk assessment, for

participants shown the risk assessment a 10% increase in perceived risk increased the odds of detention by a

factor of 2.39 (Table 5.7). Thus, for example, an increase in perceived risk from 30% and 60% led to an increase

in detention probability of 42.0% without the risk assessment and of 57.0% with the risk assessment (Table 5.9).

In the loans setting, the risk assessment altered decisions by making participants more risk-averse at all levels

of risk (Figure 5.5). Presenting the risk assessment increased the odds of rejecting loan applications by a factor
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Not Shown RA Shown RA (interaction)

Intercept 39.37 (1.93) *** –24.02 (2.45) ***
Annual income –0.03 (0.01) *** –0.02 (0.01) *
Good FICO score –5.81 (1.04) *** +2.23 (1.31) .
Very good FICO score –7.91 (1.46) *** +1.47 (1.83)
Exceptional FICO score –9.29 (2.52) *** –0.51 (3.24)
Fully own home –0.30 (0.99) +2.13 (1.26) .
Loan amount 0.27 (0.28) –0.45 (0.37)
Monthly installment –0.74 (8.96) +16.81 (11.50)
Interest rate 0.33 (0.12) ** +0.51 (0.15) ***
60-month term –2.21 (1.91) +7.41 (2.49) **

Table 5.6: Bayesian linear regression results estimating the average risk prediction about each loan applicant. Regres-

sions are based on the attributes of each application, whether the risk assessmentwas shown, and interactions between

these factors. Annual income, loan amount, and monthly installment are measured in units of $1000. The first column

presents the coefficient of each factor and the second column presents the interaction of that factor with the risk as-

sessment. The shifts in prediction-making indicated here brought participant predictions closer in linewith how the risk

assessmentmade predictions. Parenthetical terms represent standard errors.. p<0.1; * p<0.05; ** p<0.01; *** p<0.001

Not Shown RA Shown RA (interaction)

Intercept –2.74 (0.17) *** –1.14 (0.14) [0.32] ***
Predicted risk 0.60 (0.04) [1.82] *** +0.27 (0.03) [1.31] ***

Table5.7: Bayesianmixed-effects logistic regression results estimating theaverage riskpredictionabouteachdefendant.

Regressions are based on the average predicted risk about the defendant, whether the risk assessment was shown, and

interactions between these factors. Presenting the risk assessment increased participants’ sensitivity to increases in

risk, reducing the likelihood of detention for 0% risk but increasing the rate at which detention probability increases as

predicted risk increases. Risk ismeasured inunits of10%. Thefirst columnpresents the coefficientof each factor and the

second column presents the interaction of that factorwith the risk assessment. Parenthetical terms represent standard

errors. Terms in brackets represent odds ratios. The standard deviation for the randomeffects are 1.03 forworker, 0.90

for subject, and 0.07 for experiment progress index. . p<0.1; * p<0.05; ** p<0.01; *** p<0.001
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Figure 5.5: Change in decision-making caused by showing the risk assessment to participants. (A) Decision functions

indicating the likelihood of detaining a defendant as a function of the perceived risk about that defendant, by risk assess-

ment treatment. The risk assessment makes people more sensitive to increases in risk, reducing detention at low risk

and increasing detention at high risk. (B) Decision functions indicating the likelihood of rejecting a loan application as a

function of the perceived risk about that applicant, by risk assessment treatment. The risk assessment causes rejection

rates to increase at all levels of risk. (C) Shift in negative decision (pretrial detention or loan rejection) rate due to the

shift in decision-making caused by showing the risk assessment, by setting. For instance, given a perceived risk of 50%

the risk assessment increases the likelihood of pretrial detention by 4.7% and the likelihood of loan rejection by 21.9%.

Bands indicate 95% confidence intervals all in panels.
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Not Shown RA Shown RA (interaction)

Intercept –4.15 (0.24) *** +0.74 (0.22) [2.09] ***
Predicted risk 0.60 (0.05) [1.82] *** +0.05 (0.05) [1.05]

Table 5.8: Bayesian mixed-effects logistic regression results estimating the average risk prediction about each loan ap-

plicant. Regressions are based on the average predicted risk about the loan applicant, whether the risk assessment was

shown, and interactions between these factors. Presenting the risk assessment increased the odds of rejecting loan ap-

plications by a factor of 2.09 but did not affect participants’ sensitivity to increases in risk. Risk is measured in units of

10%. The first column presents the coefficient of each factor and the second column presents the interaction of that

factorwith the risk assessment. Parenthetical terms represent standard errors. Terms in brackets represent odds ratios.

The standard deviation for the random effects are 1.19 for worker, 0.90 for subject, and 0.29 for experiment progress

index. . p<0.1; * p<0.05; ** p<0.01; *** p<0.001

of 2.09 (Table 5.8). For all levels of perceived risk up to 46.0% (covering 97.3% of risk estimates with the risk

assessment), participants were more than twice as likely to reject loan applications if they were shown the risk

assessment (Table 5.9). For instance, an applicant with a perceived risk of 30% had an 8.7% likelihood to be

rejected by a participant not shown the risk assessment but an 18.8% likelihood to be rejected by a participant

shown the risk assessment.

Participant responses to survey questions after making decisions indicate that shifts in people’s decisions did

not align with shifts in their perceptions or beliefs. Despite becoming more attentive to risk when making

decisions, participants presented with the risk assessment expressed less support for basing decisions on risk

(Pretrial: P=.003, d=0.21; Loans: P=.001, d=0.23) and did not alter the priority given to key considerations

(including risk) when making decisions (Table 5.10).

5.3.5 Distinguishing Between Shifts in Predictions and Decisions

Because the risk assessment influenced both prediction-making and decision-making, our results reflect the

behavior of participants whose predictions and decisions were both subject to the same stimuli (i.e., Settings 1

and 4). Because we did not observe the outcomes of Setting 3, we cannot directly compare Settings 3 and 4 in

order to isolate the effects of the risk assessment’s unexpected influence on decision-making, conditioned on the
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Risk No RA Pretrial
Shown RA Difference No RA Loans

Shown RA Difference

0% 6.15% 2.06% –4.09% [5.38] 1.60% 3.24% +1.64% [3.45]
10% 10.62% 4.74% –5.88% [5.93] 2.84% 5.98% +3.15% [4.65]
20% 17.73% 10.52% –7.21% [5.64] 5.00% 10.82% +5.82% [6.10]
30% 28.13% 21.80% –6.33% [3.84] 8.70% 18.81% +10.11% [7.17]
40% 41.58% 39.83% –1.75% [0.88] 14.73% 30.68% +15.95% [7.34]
50% 56.41% 61.11% +4.70% [2.20] 23.89% 45.78% +21.89% [7.07]
60% 70.16% 78.83% +8.67% [4.49] 36.31% 61.63% +25.32% [6.49]
70% 81.01% 89.80% +8.79% [5.52] 50.80% 75.27% +24.47% [5.39]
80% 88.54% 95.41% +6.87% [5.35] 65.04% 85.19% +20.14% [4.14]
90% 93.32% 98.00% +4.68% [4.71] 76.93% 91.55% +14.63% [3.19]
100% 96.19% 99.14% +2.95% [4.07] 85.60% 95.32% +9.72% [2.54]

Table 5.9: Negative decision probabilities at a range of risk levels, by setting and risk assessment treatment. No RA indi-

cates the probability of negative decisions when not shown the risk assessment, Shown RA indicates the probability of

negative decisionswhen shown the risk assessment, andDifference indicates the difference between these values (num-

bers in brackets indicate the effect size of this difference). All differences in both settings are statistically significantwith

p<.001.

Not Shown RA Shown RA P-value Effect size

Pretrial
Incapacitation 30.86 29.89 .341 0.07
Freedom 25.76 26.68 .372 0.07
Deterrence 20.04 19.05 .245 0.08
Rehabilitation 23.35 24.38 .289 0.08

Loans
Likelihood to pay 40.98 39.28 .211 0.09
Equity 21.51 22.59 .124 0.11
Economic development 19.63 19.29 .622 0.03
Neighborhood stability 17.89 18.84 .200 0.09

Table5.10: Participantbeliefs abouthowdecision-makers shouldbalancepriorities. Aftermakingdecisions, participants

were asked towhat extent a decision-maker (a judge or government loan agent) should value four salient considerations

whenmakingdecisions. Participantshad toassigna total of100points (in incrementsof5) across the four considerations.

None of the average values assigned to these considerations differ significantly across the risk assessment treatment.

101



−10

−5

0

5

Setting 3 Setting 4

C
ha

ng
e 

in
 P

re
tr

ia
l D

et
en

tio
n 

R
at

e

Race Black White

Figure 5.6: Simulated changes in pretrial detention rates in Settings 3 and 4 compared to Setting 1, by race. In Setting

3, the detention rate for both races is reduced by less than 0.1% compared to Setting 1. In Setting 4, the detention rate

for Black defendants is reduced by 3.0%while the detention rate for white defendants is reduced by 4.9% compared to

Setting 1.

expected effect of the risk assessment improving predictions. We estimated this effect by simulating predictions

and decisions about more than 4,000 defendants and loan applicants.

In the pretrial setting, the risk assessment’s influence on decision-making reduced the average detention rate

but exacerbated racial disparities, an effect also observed in empirical studies of pretrial risk assessments [8, 107,

464, 466]. Compared to the baseline process in Setting 1, the risk assessment’s effect on predictions alone (Setting

3) did not alter detention rates for either race whereas the risk assessment’s effect on predictions and decisions

(Setting 4) reduced detention by 4.9% for white defendants and 3.0% for Black defendants (P<.001, d=1.52;

Figure 5.6). Thus, the shift in decision-making prompted by the risk assessment increased the racial disparity by

1.9% and by a factor of 1.34 from 5.6% in Setting 3 to 7.5% in Setting 4 (P<.001, d=1.06; Figure 5.7).

In the loans setting, the change in decision-making caused by the risk assessment generated a marked increase

in rejections. Were the risk assessment to affect only predictions, the simulated rejection rate would drop from
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Figure 5.7: Simulated changes in outcomes in Settings 3 and 4 compared to Setting 1. (A) Change in Black-white de-

tention rate disparity in Settings 3 and 4 compared to Setting 1. Setting 3 reduced the average racial disparity by less

than 0.1% while Setting 4 increased the average racial disparity by 1.9%. (B) Change in loan rejection rate in Settings

3 and 4 compared to Setting 1. Setting 3 reduced the average rejection rate by 7.3% while Setting 4 increased the av-

erage rejection rate by 1.0%. Comparisons of Settings 3 and 4 measure the effect of the risk assessment’s influence on

decision-making, conditioned on the expected effect of the risk assessment improving predictions.

22.2% in Setting 1 to 14.9% in Setting 3 (P<.001, d=13.09). The shift in decision-making negates this effect,

however, increasing rejection rates by 8.3% and by a factor of 1.55 from 14.9% in Setting 3 to 23.2% in Setting

4 (P<.001, d=14.88). Instead of simply reducing predictions of risk and thereby generating a 7.3% increase in

loans granted, the risk assessment also increased risk-aversion and thereby reduced the loans provided by 1.0%

(Figure 5.7).

5.4 Alternative Explanations

In this section we discuss potential alternative explanations for our findings (in contrast to the explanation that

the risk assessment makes risk a more salient factor in decision-making) and describe why they are inconsistent

with our experimental results.
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5.4.1 Participants Have Greater Confidence in Risk Predictions

One alternative explanation is that the risk assessment makes people more confident in their risk prediction rather

than more concerned about avoiding risk in decision-making. In other words, people may place a greater weight

on their risk prediction because they are more certain about this prediction (rather than because they are more

concerned about risk as a consideration). If this were the case, we would expect to see risk becoming a more

“extreme” distinguishing factor in decisions: low levels of risk have even lower detention/rejection rates, while

high levels of risk lead to higher rates. That is indeed what we observe in the pretrial setting (Figure 5.5), meaning

that the results appear consistent with both our explanation as well as this alternative explanation. We observe a

quite different effect in the loans setting, however: rejection rates go up at all levels of risk (Figure 5.5). This result

is consistent with our explanation that the risk assessment makes people more risk-averse yet inconsistent with

people becoming more confident in their risk prediction. For instance, it is relatively implausible that becoming

more confident that a loan applicant has a 10% likelihood to default on the loan would more than double the

likelihood of rejecting that loan application. Thus, the loans setting results are consistent with our explanation

of risk-aversion but inconsistent with the alternative explanation of greater confidence.

We can look to participant self-reports of confidence to further investigate the role of confidence in decision-

making, finding that the risk assessment has no significant effects on participant confidence. In the exit survey at the end

of the experiment, every participant was asked how confident they were in their decisions, on a Likert scale

from 1 (least confident) to 7 (most confident). Across both predictions and decisions in both settings, the

risk assessment did not affect participant confidence. In the pretrial setting, participants making predictions

reported an almost identical average confidence of 5.30 both with and without the risk assessment (P=.978,

d=0.00). Participants making decisions reported being negligibly more confident (P=.246, d=0.08). In the loans

setting, the risk assessment negligibly increased participant confidence among participants making predictions

(P=.580, d=0.07) and decisions (P=.213, d=0.09). Given that the risk assessment did not produce any significant
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impacts on participant self-reports of confidence, it seems quite unlikely that the effects of the risk assessment

can be attributed to participants being more confident in their estimates of risk when making decisions.

Finally, even if the alternative explanation does hold in the pretrial setting, the ultimate effects are the same.

Whether because people are more confident in their risk prediction or because they are more concerned about

risk, the result is that risk becomes a more important factor distinguishing between who is detained and who is

released before trial. This represents a substantial and unexpected change in policy toward more strongly making

pretrial decisions on the basis of risk, a shift that has been heavily debated for decades.

5.4.2 Prediction-Makers and Decision-Makers Have Different Predictions of

Risk

Another alternative explanation is that perceived risk differs between people making predictions and people

making decisions. Recall that in our experiments, we estimated the perceived risk for decision-makers by taking

the average perceived risk about the same subject from predictors (controlling for whether the risk assessment

shown to each group). It is plausible, however, that these two groups do not have identical perceptions: in

particular, the effect of the risk assessment on predictions may be attenuated for participants who were not

explicitly asked to report a prediction. Because decision-makers were not asked to make an explicit estimate

of risk, these participants may not have had their internal estimate of risk be as strongly influenced by the risk

assessment. Although it is possible that decision-makers and predictors do not share identical perceptions of

risk, this explanation is directly contradicted by some of our results. Most notable is the contrast between the

effects of the risk assessment in the loans setting, reducing predictions of risk yet increasing loan rejections. As

described above, the risk assessment reduced the average prediction of loan default risk from 38.5% to 24.4%

(P<.001, d=0.59) and caused predictions of risk to decrease for 92.3% of loan applicants. Despite this, the risk

assessment increased the loan rejection rate from 22.0% to 23.3% (P=.016, h=0.03) and caused loan rejections

to increase for 50.0% of applicants (including 47.3% of the loan applicants whose perceived risk was reduced by
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the risk assessment). This contrast between the effects of the risk assessment on predictions and on decisions

is clearly inconsistent with decision-makers simply experiencing a diminished shift in risk perceptions compared

to predictors due to the risk assessment.

5.4.3 The Risk Assessment Provides a Random Shock to Decisions

A third alternative explanation is that the risk assessment provides a random shock to decision-making, adding

“noise” to decisions in a manner that is not connected to perceived risk (or changes in perceived risk). Two

results can most clearly rule out this explanation. First, we observed that the reduction in pretrial detention

and the increase in loan rejections were statistically significant, indicating that the risk assessment does influence

decisions in specific directions (although that direction differs across settings). Second, in both settings there

is a positive and statistically significant relationship between changes in perceived risk and changes in negative

decision rates for each subject (Figure 5.4). Although this relationship is relatively inelastic, changes in negative

decisions are significantly related to changes in perceived risk, indicating that the risk assessment’s effect on

decisions is connected to the risk assessment’s effect on predictions.

5.5 Discussion

These results raise new concerns regarding the desirability of integrating risk assessments into government

decision-making. Our evidence of risk assessments altering decision-making demonstrates that the effects of

risk assessments are akin to significant shifts in policy and jurisprudence. Although risk assessments are com-

monly defended as merely providing information to human decision-makers, our findings demonstrate that risk

assessments alter how decisions are made as a function of risk predictions, increasing the priority placed on reduc-

ing risk in pretrial detention and government loan decisions (alternative explanations, such as the risk assessment

making participants more confident in their risk estimates, can be ruled out by our data and are discussed in detail
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in the supplementary materials). Not only would this shift in decision-making occur without public deliberation

(for it was neither intended nor expected), but it may be further shrouded by decision-makers not recognizing

how the risk assessment influenced their behavior, an effect observed here as well as in the prior two chapters.

If risk assessments increase the weight that judges place on risk to distinguish whom to release and detain, these

algorithms would enhance the constitutionally contested policy of preventative detention [26, 326] without this

effect being subject to any democratic deliberation or oversight. Similarly, greater risk-aversion in providing

government loans would reduce government aid and, given that non-whites have disproportionately higher risk

levels [274], potentially increase racial disparities in access to resources.

In light of these shifts in decision-making, our results demonstrate the potential harms of centering a risk-

prediction framework in complex government decisions. Despite the enthusiasm for using machine learning

to solve “prediction policy problems” [276], government decisions require balancing accurate predictions with

numerous other values. For instance, pretrial decisions must consider the liberty of defendants [12] and govern-

ment home improvement loans aim to promote equity by supporting low-income applicants [127]. Thus, even

though risk assessments can improve the accuracy of risk predictions, the normative multiplicity inherent in many

government decisions creates substantive conflicts between risk-minimization and other values. Studies of risk

assessments may therefore overestimate the benefits and underestimate the harms of incorporating algorithmic

predictions into government decisions [466, 518]. If risk assessments are to be implemented at all, they must

first be grounded in rigorous evidence demonstrating what impacts they are likely to generate and in democratic

deliberation supporting those impacts.
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Part II

Risk and Response
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Chapter 6

Predictions and Policing

6.1 Predictive Policing

Predictive policing algorithms represent another form of risk assessment used in the criminal justice system

to improve public policy. These algorithms take two primary forms: place-based algorithms that predict the

risk of crime in particular geographic locations and person-based algorithms that predict the risk that specific

individuals will be perpetrators or victims of violence [241]. For instance, one of the most widely used place-

based predictive policing tools is PredPol: software that, on the basis of historical crime records, analyzes how

crime spreads between places and then forecasts that spatial process into the future to predict where the next

crimes will occur. The company translates these predictions for police via an interactive map overlaid with red

squares (covering 500 feet by 500 feet) at the predicted high-crime locations. If police spend time in those regions,

the company posits, then they will be more effective at preventing crime and catching criminals. PredPol has

aggressively shared case studies asserting the effectiveness of its software, citing “a proven track record of crime

reduction in communities that have deployed PredPol” [401].
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As explained by Andrew Ferguson, a legal scholar and the author of The Rise of Big Data Policing, predictive

policing is alluring to police departments because it provides “‘an answer’ that seems to be removed from the

hot button tensions of race and the racial tension arising from all too human policing techniques.” He adds, “A

black-box futuristic answer is a lot easier than trying to address generations of economic and social neglect, gang

violence, and a large-scale underfunding of the educational system” [160].

Thus, in the wake of growing outrage about discriminatory police practices—including numerous high-profile

police killings of African Americans—and burgeoning support for systemic police reforms, predictive policing

was hailed as “a brilliantly smart idea” that could “stop crime before it starts” through objective, scientific as-

sessments [425, 476]. In an interview, a former police analyst who served for several years as a lobbyist for the

company declared, “It kind of sounds like science fiction, but it’s more like science fact” [45, 402].

Thorough evaluations of predictive policing tools suggest that they promise far more than they can deliver.

A 2016 study “found little evidence that today’s systems live up to their claims,” instead concluding, “Predictive

policing is a marketing term” [419]. In fact, many of the statistics touted by PredPol are cherry-picked numbers

that take advantage of normal fluctuations in crime to suggest that PredPol generated significant reductions [113].

As one statistician notes, this type of analysis “means nothing” [45].

John Hollywood, a researcher at the RAND Corporation who has assessed numerous predictive policing

tools, calls any benefits of predictive policing “incremental at best” and says that to predict specific crimes “we

would need to improve the precision of our predictions by a factor of 1000” [241]. Hollywood’s analysis of a

predictive policing effort in Louisiana—one of the only independent analyses of predictive policing that has been

conducted—found that the program had “no statistically significant impact” on crime [238].

Supporters of predictive policing assert that the software must be fair, because it relies on data and algorithms.

According to Brett Goldstein, Chicago’s former chief data officer, an early predictive policing effort in Chicago

“had absolutely nothing to do with race,” because the predictions were based on “multi-variable equations”

[476]. Los Angeles Police Commander Sean Malinowski called PredPol “objective” because it relies on data
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[257]. Similarly, the director of Hitachi’s crime-mapping software declared that the program “doesn’t look at

race. It just looks at facts” [455].

But the “facts” of the matter—in this case, crime statistics—are well known to be “poor measures of true

levels of crime,” writes the criminologist Carl Klockars. Because “police exercise an extraordinary degree of

discretion in deciding what to report as crimes,” Klockars explains, police statistics “are reflective of the level of

police agency resources dedicated to [the] detection” of particular types of crime, rather than the actual levels

of crime across society [280]. In other words, what appear to be facts about crime are largely facts about police

activity and priorities.

For years, police have disproportionately targeted urban minority communities for surveillance and arrests,

leading to decades of crime data that reflect this discriminatory treatment [10]. Police predominantly patrol

black neighborhoods and possess significant discretion regarding when and why to arrest someone [351]. Many

incidents that police never observe, act on, or even target in white communities are recorded as crimes in black

neighborhoods [414].

This is what makes The New Inquiry’s “White Collar Crime Early Warning System” such a wonderful piece

of satire. The magazine developed a model, using similar technical approaches as predictive policing tools, that

predicts where financial crimes are likely to occur [294]. In Chicago, for example, whereas most crime maps

show hot spots on the predominantly black and brown south and west sides, the hot spots for white-collar crime

are in the central business district (“The Loop”) and the primarily white north side. That these maps—and in

fact the very idea of using algorithms to proactively target financial crimes—are so striking brings to light an oft-

overlooked aspect of the criminal justice system and machine learning–based reform efforts: our very selection

of the crimes that ought to be aggressively monitored and enforced rests in part on racist and classist notions of

social order [63].

Thus, even if a machine learning algorithm is not hard-coded to exhibit racial bias, the data fromwhich it learns

reflects social and institutional biases. In this way predictive policing, while supposedly neutral, overemphasizes
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the criminality of black neighborhoods and intensifies the police presence around people and places that are

already unfairly targeted. An analysis in Oakland by the Human Rights Data Analysis Group demonstrates how

predictive policing can lead to these disparities. Although local public health estimates suggest that drug crimes

are ubiquitous in Oakland, the study found that “drug arrests tend to only occur in very specific locations—

the police data appear to disproportionately represent crimes committed in areas with higher populations of

non-white and low-income residents” [313]. The study’s authors developed an algorithm, based on PredPol’s

methods, to determine what impacts predictive policing could have. They concluded that if the Oakland Police

had used PredPol, “targeted policing would have been dispatched almost exclusively to lower income, minority

neighborhoods” [312].

But perhaps some technical mechanisms can be employed to avoid biased predictions: if the biases reflected in

crime data make predictive policing discriminatory, is there any way to make it fair? Yet the issue with predictive

policing is not just that the predictions may be biased—it is that predictive policing relies on traditional definitions

of crime and assumes that policing represents the proper method to address it. Focusing on the models’ technical

specifications (such as accuracy and bias) overlooks an even more important consideration: the policies and

practices that the algorithm supports. In this way, attempts to improve social structures with mere technical

enhancements implicitly (and perhaps unintentionally) subvert opportunities to critically assess and systematically

reform political institutions. For even if police are dispatched to neighborhoods in the most fair and race-neutral

possible manner, their typical actions once there—suspicion, stop-and-frisks, arrests—are inextricably tied to

the biased practices that predictive policing was largely designed to redress. When unjust policies and practices

are followed, even a superficially “fair” approach will have discriminatory impacts.

Consider what happened in Shreveport, Louisiana, during a predictive policing trial studied by RAND. When

patrolling neighborhoods identified as high-crime, many police officers unexpectedly changed their tactics to

focus on “intelligence gathering through leveraging low-level offenders and offenses.” Officers increasingly

stopped people whom they observed “committing ordinance violations or otherwise acting suspiciously” in
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order to check their criminal records. Those whose histories contained prior convictions were arrested [238].

Whether or not Shreveport’s algorithm accurately and fairly identified where crime would occur, it generated

increased police activity and suspicion in the regions of interest. Although unintended, this response is not

surprising. After all, the point of predictive policing is to identify locations where crime will occur. Doing so

primes police to be “hyper alert” when patrolling inside the regions and thus to treat everyone there as a potential

criminal [376]. And given the substantial evidence of racial bias in practices such as stop-and-frisk [181], it is not

hard to imagine that the people whom police stop for committing violations or acting suspiciously will mainly be

young men of color, thereby increasing both incarceration rates and conflict between police and communities.

Here we see the interplay between predictions and politics: whether or not predictive policing algorithms

accurately and fairly identify high-crime locations, they do not dictate what actions to take in response. Govern-

ments choose to give responsibility for dealing with most forms of social disorder to the police. Police choose to

go into these neighborhoods with heightened suspicion and a warrior mind-set. Thus, the seemingly technical

decisions about how to develop and use an algorithm are necessarily intertwined with the clearly political deci-

sions about the kind of society we want to inhabit. If cities truly know where crime will occur, why not work

with that community and with potential victims to improve those neighborhoods with social services? Why is

the only response to send in police to observe the crime and punish the offenders?

While the criminal justice system has always involved contentious and complex political decisions, the danger

of using technology to make these decisions is that we will misinterpret them as technical problems that do not

require political deliberation. Treating technology as the only variable of change blinds us to the full possibilities

to reform the policies and practices that technology purports to improve. When predictive policing gets hailed

as the new and scientific approach to policing, it distracts us from the hard choices that must be made about

what police should prioritize and what their role in society should be. Thus, writes Andrew Ferguson, “Predictive

policing systems offer a way seemingly to turn the page on past abuses, while still legitimizing existing practices”

[160].
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6.2 Responding to Predictions

More fundamental than biases within data are the politics embedded within the algorithms. For although design-

ing algorithms appears to be a technical task, the choices made can have vast social and political impacts. All

too often, algorithms that promise efficiency as a neutral good reflect the priorities of existing institutions and

power structures. In privileging police efficiency in reducing crime rates over alternative goals such as improving

neighborhood welfare with social services, supposedly neutral models further entrench the role of police as the

appropriate response to social disorder. In that sense, predictive policing is likely to have discriminatory impacts

not just because the algorithms may themselves be biased but also because they are deployed to grease the wheels

of an already discriminatory system.

Rather than rush to adopt machine learning, we must ask: What goals should we pursue with the aid of

predictive algorithms? How should we act in response to the predictions that are generated? How can we alter

social and political conditions so that the problem we want to predict simply occurs at lower rates? Not every

application of machine learning is inevitably biased or malicious, but achieving benefits from machine learning

requires that we debate—in political rather than technical terms—how to design algorithms and what they should

be deployed to accomplish.

Policing is not the only or the most effective way to curb crime and aid communities—in fact, as the police

scholar David Bayley explains, “one of the best kept secrets of modern life” is that “[t]he police do not prevent

crime” [32]. For example, a 2017 study found that proactive policing “may inadvertently contribute to serious

criminal activity” and “curtailing proactive policing can reduce major crime,” suggesting that one of the most

common (and discriminatory) police practices does not even achieve its stated purpose of reducing crime [470].

Although police possess means and powers to deter and punish certain criminal activity, they are ill-equipped

to take on the full range of issues with which they are increasingly required to deal: poverty, homelessness,

mental health and drug crises, isolated neighborhoods with poor education and limited job opportunities. These
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issues would be better addressed by alternative interventions. It is only by starting with a comprehensive and

compassionate understanding of what factors lead to contact with the criminal justice system and what tactics

can be used in response that algorithms can truly help generate a more just city.

Instead of conceiving more holistic approaches that capture the complexity of the world, however, predictive

policing efforts tend to adopt visions of society that fit the simple presumptions within models and to presume

that the only possible social change is to make policing more efficient by using data and algorithms. A person’s

or neighborhood’s “risk” of crime are treated as inherent attributes of those people or places.

For instance, one statistician describes the task of person-based risk assessments in vivid terms: “We have

Darth Vaders and Luke Skywalkers, but we don’t know which is which” [21]. The goal is to distinguish Vaders

from Skywalkers. Although this description helps explain how the algorithm works, it also oversimplifies the

social complexities of characterizing a person’s “risk.” The world cannot be broken down into people who want

to destroy the universe and those who risk their lives to save it. Unwittingly, this analogy highlights the fallacies

of such simplistic thinking. As one critic writes, “Darth Vader wasn’t an unimpeachably evil individual. At

one point he was an innocent little boy who grew up in some dire circumstances” [205]. Rather than question

why people make certain decisions or end up in particular situations—and attempt to push them toward positive

outcomes—this approach to developing risk assessments presumes that people are fundamentally either good or

bad, and that our task is simply to determine whom to punish. All we can do is follow the binary representations

defined by the algorithm.

An ambitious effort along these lines is to predict whether newborn babies in Norway will commit a crime

before turning eighteen, from information such as where that baby lives and who its parents are [58]. If the same

approach were taken in the United States, there is little doubt that a machine learning algorithm could distinguish

with reasonable accuracy between people who will be arrested and those that will not. After all, a government

report estimated that of male babies born in 2001, one of out every three blacks, compared to only one out of

every seventeen whites, would go to prison at some point during his life [43]. Given those stark statistics, we
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don’t need cutting-edge algorithms to predict who will be arrested.

Just because we can predict a certain outcome does not mean we should consider that outcome to be in-

evitable or just. That a model could predict a baby’s future criminality reflects the vast inequalities of justice and

opportunity in society, not the inherent nature of certain people. In just the last century, African Americans

have, among many injustices, been excluded from government programs that provided loans for education and

housing and been funneled into prisons through the war on drugs [10, 424]. The vast disparities in education,

income, and crime that have resulted from these actions are not inevitable but the product of discrimination. A

person or neighborhood’s “risk,” in other words, reflects the social and political conditions that shape behavior

and outcomes.

A 2012 advertisement for IBM’s Domain Awareness System portrays a similar perspective. The commercial

follows two white men—the proverbial cop and robber—driving through city streets at night. The police officer

provides a voiceover that begins as follows: “I used to think my job was all about arrests. Chasing bad guys. Now

I see my work differently. We analyze crime data, spot patterns, and figure out where to send patrols.” Relying

on the advice of a computer in his police car, the officer reaches a convenience store just in time to thwart the

would-be thief [242].

Although it tells an appealing story, IBM’s ad demonstrates how predictive policing software both relies on

and perpetuates simplistic notions of policing and crime. The officer’s first two statements set up the rules of

society: there are “bad guys” who commit crime and police (the implied “good guys”) whose job it is to arrest

them. This story presents another Luke Skywalker versus Darth Vader scene, with no backstory (for apparently

none is needed) to explain how each person came to their present roles. In this way, in addition to completely

exaggerating what algorithms are capable of—no system can predict crime at scale with anywhere near the level

of precision depicted—IBM’s ad ignores all of the social and political dynamics that underlie crime and policing.

The society portrayed in this vignette has no poverty, no segregation, no stop-and-frisk—in fact, because every

character is white, it has no racial dynamics at all. We are left with a facile and pernicious conclusion: because
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of the presence of “bad guys,” crime is an inevitable phenomenon that can be prevented only by police who

possess the necessary information.

Predictive policing thus suffers from a gaping divide between the problem being solved and the problem that

needs solving. Owing to their focus on technology, many believe that the issues of policing stem from poor

information about when and where crime will occur in the future. This is a problem that (at least in principle)

new technology can solve. But as Alex Vitale argues in The End of Policing, “The problem is not police training,

police diversity, or police methods. …The problem is policing itself.” Tracing the history of policing from its

roots to the present day, Vitale concludes: “American police function, despite whatever good intentions they

have, as a tool for managing deeply entrenched inequalities in a way that systematically produces injustices for

the poor, socially marginal, and nonwhite” [501].

In the hands of police, even algorithms intended for unbiased and nonpunitive purposes are likely to be

warped or abused. In Chicago, for example, an algorithm conceived to reduce violence was perverted—through

police control—into a tool for surveillance and criminalization. Drawing on research regarding how gun violence

clusters in social networks (Papachristos andWildeman, 2014), the Chicago Police Department (CPD) developed

an algorithm to identify the people most likely to be involved in gun violence. And although the original stated

intention for this “Strategic Subjects List” (SSL) was to prevent violence, it has largely been used as a surveillance

tool that many believe disproportionately targets people of color [188]. A RAND evaluation concluded that the

SSL “does not appear to have been successful in reducing gun violence”; instead, “the individuals on the SSL

were considered to be ‘persons of interest’ to the CPD” and were more likely to be arrested [434].

Following the analysis of this chapter, the next chapter articulates a novel and alternative approach to predicting

and responding to violence in Chicago. The methods described in the next chapter are grounded in two central

insights. First, that risk is a product of social and structural—rather than natural and individual—conditions.

Second, that predictions of risk must be responded to with rehabilitative and supportive social services rather

than with punitive policing.
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Chapter 7

ModelingContagionThrough SocialNetworks

to Explain and Predict Gunshot Violence

7.1 Introduction

In 2013, 11,208 people in the United States were murdered with a firearm and approximately 62,220 others were

injured in non-fatal gun assaults [167]. Although mass shootings are often the focus of public attention, the vast

majority of gun murders and assaults occur in everyday incidents involving a small number of people (typically

two) [513]. Furthermore, gun violence tends to concentrate within socially and economically disadvantaged

minority urban communities where rates of gunshot injuries far exceed the national average [348, 390] and where

young Black men experience rates of gun homicide ten times higher than their white counterparts [513].

The media, politicians, and academics alike often describe gun violence in the U.S. as an “epidemic” [51, 85, 95,

453, 513, 524], implying concern over its alarmingly high levels as well as the possibility of its spread. Although

gun violence’s stubborn persistence in certain communities might be more accurately described as an endemic
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[85], the public emphasis on epidemics has inspired research on the mechanisms through which violence might

be transmitted [345, 385, 524]. The most common approach measures the spatial diffusion of gun violence from

neighborhood to neighborhood [91, 345, 348, 524]. Although this spatial approach often discusses interpersonal

relationships related to gang activity [478, 524] or drug markets [90] as the drivers behind the diffusion of gun

violence, the statistical models themselves presume that violence might be conceptualized an airborne pathogen

(such as influenza) moving between neighborhoods, and that can be “caught” by inhabiting locations with high

incidence rates.

Recent thinking suggests, however, that many of the processes that we attribute to geography might occur

in part due to the interpersonal ties underlying social networks [429]. Research on gun violence in Chicago,

Boston, and Newark has found that gunshot victims are highly concentrated within networks, along with cross-

sectional evidence that such concentration is related to social contagion, i.e., the spreading of beliefs, attitudes,

and behaviors through social interactions [381, 385, 382, 480]. Furthermore, social networks are fundamental in

diffusion processes related to diverse areas such as behaviors [75], opinions [24, 44], HIV [4], obesity [83], and

depression [423]. Taken together, these studies suggest that the diffusion of gun violence might occur through

person-to-person interactions, in a process akin to the epidemiological transmission of a bloodborne pathogen

(such as HIV). Contagion via social ties, then, may be a critical mechanism in explaining why neighborhoods

matter when modeling the diffusion of crime and, perhaps more importantly, why certain individuals become

victims of gun violence while others exposed to the same high-risk locations and situations do not.

To study the role of social influence in gun violence, we examined a particular interaction between individuals:

being arrested together for the same offense, a behavior known as co-offending. Co-offending typically occurs

between people who share strong pre-existing social ties [502] and is driven by social processes that amplify risky

behaviors (criminal or delinquent acts that might lead to arrest, including violent victimization and offending)

[222, 223, 481, 502, 521]. Like other social behaviors such as needle-sharing [282] and sex [4, 33], co-offending

may reveal patterns of social interactions that influence how victimization spreads [159, 223, 374, 472, 502]. We
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hypothesized that a person becomes exposed to gun violence through social interactions with previous victims:

someone who has been shot may be more likely to be embedded in the networks and environments in which

guns are present and gun violence is likely to erupt. Associating with victims of gun violence, and specifically

co-engaging in risky behaviors with them, therefore may expose individuals to these same behaviors, situations,

and people that in turn increase the probability of victimization.

Our study directly assessed the efficacy of treating the diffusion of gunshot victimization as an epidemio-

logical process that spreads through social networks. Our central hypothesis was that when someone in your

network becomes a victim of gun violence, your risk of victimization temporarily increases. We hypothesized

that predictive models incorporating social contagion would outperform models considering only individual and

ecological risk factors in predicting future gunshot victims. Modeling the precise social dynamics of victimiza-

tion could represent an important advance in treating gun violence as a public health epidemic. By uncovering

high-risk individuals and transmission pathways that might not be detected by other means, a contagion-based

approach could detect strategic points of intervention that would enable measures to proactively reduce the

trauma associated with gun violence rather than react to past incidents. Importantly, such a contagion-based

approach is victim-centered, and as such has the potential to move the larger public dialogue on gun violence away

from efforts that rest largely on geographic or group-based policing efforts that tend to disproportionately affect

disadvantaged minority communities.

We tested our hypothesis in Chicago, IL, a city whose well-documented patterns of gun violence are emblem-

atic of the epidemic described above and whose rates of gun violence are more than three times the national

average (Figures 7.1 and 7.1) [42, 206, 347, 384, 429, 371]. Although Chicago does not have the highest urban per

capita homicide rate, the city has a long history of violence and consistently tallies a greater number of homicides

than any other city in the United States [124].

As in other major U.S. cities, violent gun crime in Chicago is intensely concentrated in a small number of

socially and economically disadvantaged neighborhoods (where homicide rates can be upwards of 75 per 100,000
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Figure 7.1: Index crime in Chicago (rate per 100,000), 1965 to 2013. Index crimes include all murders, criminal sex-

ual assaults, aggravated assaults/batteries, burglaries, thefts, robberies, arsons, and motor vehicle thefts. Crime rose

throughout the 1970s and 1980s, peaking in 1991 with a rate of 10,647.9 per 100,000 people. Crime in Chicago has

since declined steadily, with a rate of 4251.2 per 100,000 in 2013. Data come from the FBIUnifiedCrimeReports [371].
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Figure 7.2: Homicide in Chicago (rate per 100,000), 1965 to 2013. Homicide rates between 1965 and 2013 follow a

similar pattern as index crime rates, peaking in the early 1990s (with a rate of 31.8 per 100,000 in 1992) and declining

steadily since then. The homicide rate in 2013was 14.1 per 100,000 people, the lowest since 1966. Homicide data from

1965 to 1994 were provided by Carolyn Rebecca Block and Richard L. Block through the National Archive of Criminal

Justice Data [42]. Detailed data on homicides from 1995 to 2010were provided by the Chicago Police Department.
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Figure 7.3: Monthly counts of fatal and non-fatal gunshot injuries in Chicago, 2006 to 2014. The number of shootings

permonth varieswidely depending on the timeof year: violence peaks in the summer anddeclines in thewinter. In 2008,

for example, the number of shootings per month varied from 74 in February to 277 in August.

people) [42, 384, 438]. Furthermore, gun violence victimization is concentrated in a small social networks: a

recent of non-fatal gunshot victimization in Chicago from 2006 to 2014 found that greater than 70% of all

victims could be located in networks containing less than 5% of the city’s population [385]. The current study

examines the extent to which individual gunshot victimization in Chicago might be explained as a process of

epidemiological transmission between individuals in these networks.

The main variable of interest in the present study is fatal and non-fatal gunshot victimization, excluding self-

inflicted and accidental gunshot injuries as well as legal interventions (i.e. police-related shootings). Figure 7.3

plots the monthly combined number of fatal and non-fatal gunshot injuries during the observation period, 2006

to 2014. The expected seasonal variation of gun violence [328, 329], with peaks in the summer months, is also

apparent. Average monthly rates during the study period ranged from 71.25 shootings in February to 245.5 in

July.
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7.2 Methods

7.2.1 Data

We examined all recorded fatal and non-fatal gunshot injuries in Chicago from 2006 to 2014 among the popu-

lation of individuals arrested during this time period. Data come from two different sources provided by the

Chicago Police Department through a nondisclosure agreement (and approved by the Yale Institutional Review

Board):

1. All 1,189,225 arrests recorded by the police from January 1, 2006 to March 31, 2014, involving 462,516

people (for comparison, the adult population of Chicago totals approximately 2.1 million). Arrest data are

recorded at the incident level and contain social and demographic information on each reported individual

including birthdate, race, ethnicity, sex, and gang membership (as identified by the police).

2. Detailed records for all 16,399 gunshot victimizations recorded by the police during the same time pe-

riod, excluding suicides, accidents, and shootings that occurred during legal interventions (i.e., shootings

involving law-enforcement personnel). These records consist of 13,877 non-fatal and 2,522 fatal shoot-

ings, affecting 14,695 people; 1,498 people were shot on more than one occasion. Among all shooting

victims, 90.2% were arrested during the study period and could be located in the arrest data.

Events and individuals are uniquely identified across both datasets using internal alphanumeric codes created

by CPD (which we refer to as Event Codes and Identity Codes, respectively), thereby allowing us to match events

and people over time and across datasets.

These data have important limitations. First, police data have known biases, including: (a) undercounts of the

true volume of crime because most crimes go unreported; (b) problems caused by data-entry errors or the use of

aliases; and (c) biases in criminal justice practices and polices, including racial and neighborhood profiling, that

might skew the true geographic and socio-demographic distribution of crime [36, 273, 477]. Regarding this last
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point, we make no claims of whether arrests were justified, but simply rely on them as the systematic recording

of an observed behavior. Second, since crime is generally underreported, our co-offending data most likely

underestimates the social ties related to risky behavior. And, third, without comparative data from other cities,

it is difficult to know how representative the Chicago co-offending network is of co-offending more generally.

7.2.2 Co-Offending Network

Figure 7.4 illustrates how the co-offending network was created. We generated a social network from the data

by identifying all unique individuals arrested during the study period and connecting them via “edges;” that is,

a relationship between pairs of individuals defined by being arrested together for the same offense (a behavior

known as co-offending) at least once during the study period (Section 7.2.1). This network contained 462,516

individuals, 467,506 edges, and 13,252 victims.

Forming the Network

We used the arrest records to generate a bipartite network that connects arrest events and people (Figure 7.4).

That is, the network connects each person to every arrest in which he or she was involved. Equivalently, the

network connects each arrest event to all of the people arrested. The network is clearly bipartite since people

cannot be linked with people and arrests cannot be linked with arrests. This network has a total 1,189,225 arrest

event nodes, 462,516 person nodes, and 1,458,957 edges.

We performed a bipartite projection on the person nodes to obtain a one-mode social network, where nodes

represent each person who was arrested during the study period. This network contained 462,516 nodes and

467,506 edges. Unweighted edges connect every pair of people who were arrested in the same event during the

study period, connecting individuals based on their association with the same crime.

Edges connected pairs of individuals who co-offended together at some point during the study period. Due

to the one-mode structure, incidents in which more than two people co-offended together were represented by

124



Figure 7.4: Co-offending Network Generation Process. (A) Example of raw data and its structure, in which Event Codes

(ECs)mark specific arrest events and IdentityCodes (ICs) represent unique individuals. Each entry represents a single in-

dividual arrested in a specific incident. (B) Bipartite (i.e., two-mode) network betweenoffenses (green) and people (blue),

generated by using the data from (A) as an edge list (in which each row represents a pair of nodes that are connected by

an edge). (C) Person-to-person (i.e., one-mode) co-offending network, generated by performing a bipartite projection on

the network from (B). Nodes represent unique offenders and edges connect offenders who were arrested for the same

incident. Note that the network shown in this panel is un-weighted, meaning that every edge has identical weight=1,

even for pairs of individuals whowere arrested together multiple times.

edges between every pair of individuals involved rather than all individuals to a common incident. More than

two-thirds of the arrests involving multiple people had only two participants, however. Another 18% contained

three people, leaving only 13% of arrests that involved more than three people. This shows that our one-mode

co-offending network is a reasonable representation of co-offending dynamics.

We treated the co-offending network as static rather than forming each edge at the date of first co-offense.

Although the co-offending events occur at specific points in time, previous research on co-offending has shown

that the individuals involved typically already have close existing relationships [502]. Because we can identify the

presence of these relationships but not the date when those relationships formed, we generate a static network

that includes every co-offense throughout the study period.

While it is possible to build a weighted social network with edge weights corresponding to the number of

co-arrests between individuals, we did not do this for three reasons. First, it is difficult to determine if two

people appear together in the arrest data multiple times because they actually co-offended together multiple
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times or simply faced multiple charges from the same co-offense. Second, there are very few edges between

individuals who co-offended multiple times together—a finding consistent with prior research on co-offending

networks [330]. 94% of edges have weight=1, 5% of edges have weight=2, and all larger edge values account

for the remaining 1% of edges. Finally, we found no evidence that high-weight edge facilitate the transmission

of gunshot victimization. For each edge weight represented in the network, we looked at the percentage of pairs

where both individuals were infected. The probability that such a pair exists actually goes down as the edge

weight increases. In particular, out of the 269 highest-weight edges (weight>5), there is not a single pair where

both people were infected. This leads us to believe that the few high-weight edges that exist have little or no

special effect on the contagion of violence.

Adding Victim Attributes

We used gunshot victimization records to determine our dependent variable of whether or not any individual in

the data was a victim of a fatal or non-fatal gunshot injury during the study period. For each victim, we record the

date of every fatal and non-fatal gunshot victimization associated with that individual. Eleven percent (N=1,251)

of the victims of non-fatal gunshots had multiple victimizations during the study period, with a maximum of

five. Twelve percent (N=247) of the victims of fatal gunshots had previously during the study period been the

victim of a non-fatal gunshot.

Althoughwe restricted ourselves to gunshot victims who are also in the co-offending network, we still captured

the vast majority of victims in our analysis: 93% of nonfatal victims members of the co-offending arrest network,

and 80% of fatal victims are in the network.

The Largest Connected Component

Decomposing the co-offending network into disjoint connected components yielded many small components

and one giant component. This is similar to the pattern observed in other empirical networks [3, 7]. More than
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half of the nodes (56%) are isolated, corresponding to people who were never arrested with anyone else. Of

the 284,876 connected components, only one contains more than 30 nodes. This largest connected component

contains 30% of the nodes in the network (N=138,163), 89% of the edges (N=417,635), and 74% of the victims

(N=9,773). As is standard in social network analyses [3], we take the largest connected component (LCC) as the

focus of our study.

The largest connected component resembled a typical social network. The network’s degree distribution

followed a power-law distribution with scaling exponent 1.39. This means that the LCC is a scale-free network,

which is very common among social networks [7]. The LCC has a clustering coefficient of 0.6 and an average

path length of 8.3. In comparison, an Erdös-Réyni random graph of the same size has a clustering coefficient of

0.00003 and an average path length of 6.78. Since the LCC is highly clustered with a similar average path length

compared to a random graph, it is a small-world network [504].

We restricted our analysis to the network’s largest connected component, which contained 29.9% of all the ar-

rested individuals (N=138,163) and 89.3% of all the co-offending edges (N=417,635). Consistent with previous

research on the concentration of gun violence within co-offending networks [385], the largest connected com-

ponent contained 74.5% of gunshot victimizations of arrested individuals (N=11,123 victimizations, affecting

9,773 people). We henceforth refer to this component as the Network.

7.2.3 Homophily, Confounding, and Contagion

Understanding how gunshot victimization might make its way through a network requires understanding differ-

ent reasons for how patterns of gunshot violence might emerge in a network: failing to account for all possible

explanations can lead to overestimating the effects of social contagion [18, 93, 448]. We consider three po-

tential explanations: individuals associate with similar peers (homophily), individuals are exposed to the same

environmental factors (confounding), and individuals influence one another’s behavior over time (contagion)

[14, 18, 83, 93]. To distinguish between these explanations, we analyzed the temporal patterns of victimization
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with those generated by simulations that account for homophily and confounding but not contagion. We ran

10,000 Monte Carlo simulations of the study period, assigning to each victim a new victimization date that is con-

sistent with his or her exposure to violence based on risk factors and environmental influences. By shuffling the

infection dates between victims as described below, the simulations generated a set of networks that 1) retained

the aggregate patterns of gun violence, as measured by the number of victimizations each day, and 2) accounted

for the effects of homophily and confounding but assume no social contagion.

Homophily would explain the temporal clustering of victims in the network if people co-offend with others

who have similar risk factors and therefore are likely to be shot at similar times. Many prior studies have shown

strong relationships between certain risk factors and exposure to violence [480], a relationship that our data cor-

roborates. In our simulations we controlled for whatever traits cause two individuals to co-offend together by

holding constant the network structure and victim identities: each victim has the same neighbors in both the real

and simulated data. Confounding would explain the pattern of victimizations if features such as age and neigh-

borhood expose similar individuals to violence at the same time. Our simulations controlled for confounding

by shuffling victimization dates only between individuals who are the same age, gender, and ethnicity; live in the

same neighborhood; and both either belong or do not belong to a gang (if an individual does not match with

anyone else across all of these features, that person’s infection date is not altered). We also controlled for the fact

that violence rates fluctuate, following a predictable seasonal trend of rising in the summer and declining in the

winter [328, 329]. Furthermore, some years have more incidents of violence than others and crime in the US and

Chicago declined during the observation period [380, 527]. In order to control for violence rates over time, we

simulated the exact same number of infections per day as observed in the data. Together, these controls ensured

that we accurately represented each person’s exposure to violence as it relates to individual and environmental

risk factors.

This approach allowed us to determine the extent to which the observed concentration of victims could be

explained without any social contagion. If the concentration of victims was primarily due to homophily and
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environmental confounding, the simulations would accurately recreate the observed pattern of gunshot violence.

On the other hand, if social contagion was responsible for some victimizations, we expected to see that the

observed victimizations appear closer together in time than the simulations could explain.

Because we held constant the set of victims and infection dates, we could simulate an infection process that

lacks social contagion by shuffling the matching between victim identity and victimization date. Given our

method’s similarity to the previously-developed “Shuffle Test” [14], we refer to our approach by the same name.

Our Shuffle Test ran as follows:

1. Take the LCC and identify the gunshot victims from the data.

2. Divide all the victims into groups that share the same birth year, gender, ethnicity, residential neighbor-

hood, and gang membership status (i.e. belong to a gang or not).

3. Within each group, randomly permute the infection dates associated with each individual. Individuals in

groups by themselves retain the same infection date.

This yielded a new version of the LCC, with the same victim population and overall set of infection dates

as the raw data. Each victim was infected at different times during the simulated study period compared to the

observed data, but in a manner that is consistent with the rate at which he or she was exposed to violence.

For each simulation, we measured how many days passed between infections within every pair of first-degree

associates who were both victims (N=9,568). If one or both victims were infected multiple times during the study

period, we take the minimum time difference between infections. As our network and set of victims are fixed

based on the data, the quantity and identities of such pairs remain constant in every simulation. If these pairs of

victim are shot equally close together in time in the data and simulations, then we will be able to conclude that

homophily and confounding are sufficient to explain the data. Alternatively, if the data exhibits a higher degree

of temporal clustering, this will imply that explanations beyond homophily and confounding are necessary.
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7.2.4 Social Contagion Model

Wemodeled the contagion of violence using a multi-dimensional Bayesian Hawkes process over the co-offending

network. We first present the general definition of Hawkes Processes, then instantiate and adapt it to the conta-

gion of gun violence over a network.

Hawkes Processes

Hawkes processes are a class of self-exciting temporal point processes originally introduced by Alan Hawkes in

the early 1970s [220], and have recently become common as a way to model contagion and diffusion processes.

Applications include the spread of seismic events [322], information spread in social networks [157], and stock

market trading dynamics [304].

A convenient way to describe temporal point processes is through their conditional intensity function, which

describes the instantaneous probability of occurrence of an event at any given time t. For Hawkes processes, the

conditional intensity function can be written as the sum of endogenous time-varying intensities (capturing the

intra-network influence of the events preceding time t) and an exogenous intensity (capturing the influence of

all extra-network factors).

Formally, for a D-dimensional Hawkes process with N infection events, let us introduce the set of events

ε = (ti, ki)1≤i≤N where ti denotes the time of event i and ki the dimension (or coordinate) on which it occurs.

The conditional intensity function is defined as follows:

λk(t) = μk +
N∑
i=1

φki,k(t− ti) (7.1)

whereM = (μk)1≤k≤D is the vector of exogenous intensities (also known as background rates) and the functions

Φ = (φi,j)1≤i,j≤D is the matrix of endogenous kernel functions (also known as exciting functions). For a pair of

coordinates (u, v), φu,v(t) models the influence of coordinate u over coordinate v after t time has passed since
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u was infected. The kernel functions are non-negative and causal (i.e. φu,v(t) = 0∀t < 0). In particular, this

implies that the summation in Equation 7.1 is only over the indices i such that ti < t.

From this definition, we see that the Poisson process can be characterized as a special case of the Hawkes

process, with a constant exogenous intensity and no dependence on past events. That is, λ(t) = λ.

I refer the reader to other sources [114, 412] for a formal discussion of the conditional intensity function and

its proper interpretation in a Hawkes process. From these we apply the following formula for the log-likelihood

of events ε = (ti, ki)1≤i≤N given M and Φ over observation period [0,T]:

L(ε|M,Φ) =

N∑
i=1

logλki(ti)−
D∑

k=1

∫ T

0
λkdt (7.2)

The first sum calculates the log-likelihood of every infection event that did occur, and the second sum calcu-

lates the log-likelihood that each individual was not infected at all other times.

Contagion of Gun Violence as a Hawkes Process

We model the contagion of gun violence as a Bayesian Hawkes Process by defining the following features: each

network vertex (i.e. each individual) occupies its own coordinate of the Hawkes Process and each gunshot

victimization is an event of the process occurring on the coordinate that corresponds to the victim (repeated

victimizations of the same individual correspond to multiple events on the same node, and are treated the same

as single victimizations).

Exogenous Intensity. We assume that the exogenous intensity is the same for every individual in the network,

and attribute the observed fluctuations of violence rates (Figure 7.3) to a seasonal effect independent of peer

contagion. For this reason, we fit a time-varying function μ(t) to the data and use it for the common exogenous

intensity.

Endogenous Exciting Functions. The exciting function φu,v(t) models the effect of person u on person

v after t time has passed since u was infected and captures two common assumptions regarding the spread of
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contagions (Figure 7.5).

First is time. Consistent with previous models used to infer the spread of contagions over social networks

[157, 184, 303], we assume that the impact of earlier infections on future events decays as the time passed since

the original infection increases. Additionally, influence can only travel forward in time: an infection has no impact

on those that came before it. As is common for Hawkes processes [114, 157, 184, 303, 304, 412], we assume an

exponential decay and obtain the following formula for the temporal component of the exciting functions:

fβ(t) = βe−βt if t > 0, 0 otherwise (7.3)

Second is network structure. Epidemiologists commonly assume that contagious events are localized and

that the transmission probability increases closer to the source [203, 447, 467, 496]. In our case, we assume

that violence is more likely to spread between people who are closely linked in the network and measure the

distance between individuals based on network topology. Based on previous studies of violence in social networks

[83, 385], we assume that infections are able to be transmitted across a network distance of up to three degrees

of separation; people who are further away in the network have no effect on one another. Hence, we obtain the

following formula for the structural component:

gα(u, v) = α dist(u, v)−2 if dist(u, v) ≤ 3, 0 otherwise (7.4)

Finally, we obtain the exciting function by combining the above two components:

φu,v(t) = fβ(t)gα(u, v) (7.5)
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Figure 7.5: Hawkesmodel dynamics over an example network. (A) A table of identities andwhether each individual was

a gunshot victim. The infection time for each victim is also recorded. (B) The co-offending network of individuals in (A),

with victims marked in red and non-victims in blue. (C) The infection rates of each person in the network over a five-

day period. Each individual is initially susceptible to infection only due to a small background rate, based on exogenous

features, that is constant across the population. When individual A is infected on day 2 (markedwith a red line), it causes

a spike in the infection rate of its three neighbors: B, D, and E. The impact of this infection decays over time. Because a

node cannot generate further infections in itself, A’s infection ratedoesnot changewhen it is infected. NodeD is infected

on day 4 (marked with another red line), causing the infection rates of A, B, and C to spike. Because the effects of peer

contagion are additive and B is connected to both infected nodes, B has the highest infection rate after D is infected.
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Model Likelihood

Using Equation 7.2 and the model presented in Section 7.2.4, we can now write the log-likelihood of observed

infection events ε = (ti, ki)1≤i≤N. V denotes the set of vertices in the network, and [0,T] marks the study

period.

Since some individuals were the victims of fatal gunshots during the study period, they were not susceptible

to infection during the entire study period. For these victims, the second summand of Equation 7.2 only needs

to be integrated until their time of death. Denoting by Tv the time of death of vertex v (Tv = T if the individual

didn’t die during the study period), we obtain:

L(α, β, μ|E) =
N∑
i=1

log λki(ti)−
∑
v∈V

∫ Tv

0
λv(t)dt (7.6)

7.2.5 Inferring Model Parameters

In this section, we describe how we learned the optimal parameters to describe the Hawkes model.

Exogenous Intensity

Because the seasonal variations in gunshot rates remain consistent throughout the study period (Figure 7.3), we

assume these are not purely driven by noise or social contagion. We model these seasonal variations with a

periodic sinusoidal function.

Let M(t) denote the expected number of total victimizations occurring on day t. We assume the following

form:

M(t) = A [1+ ρsin(ωt+ φ)] (7.7)

Because violence fluctuates annually, we know that the period is one year, i.e. ω = 2π/365.24. We learn the

remaining three parameters {A, ρ, φ} using non-linear least squares estimates with the Gauss-Newton algorithm.
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Figure 7.6: Shootings per day and best-fit curve during the study period. Each blue dot represents the number of shoot-

ings (fatal and non-fatal) on a single day. Values ranged from0 (N=280, 9.3%) to 16 (N=1), with amean of 3.7 andmedian

of 3. In order tomodel how violence rates vary over time, we fit a sinusoidal curve to this data (in green).

This yields:

M(t) = 3.73
[
1+ 0.43sin

(
2π

365.24
t+ 4.36

)]
(7.8)

Figure 7.6 depicts the number of infections on each day of the study period along with the functionM(t).

Because we do not yet know the importance of the exogenous intensity in spreading gunshot violence, we

keep only {ρ, φ} from the fitted parameters. In other words, we only keep the parameters characterizing the

seasonal fluctuations; the base amplitude A of the exogenous intensity will be inferred together with the kernel

function parameters in the following section.

Finally, we relate the aggregate number of infections M(t) to the node-level exogenous intensity μ(t). By

definition:

M(t) =
∑
v∈V

∫ t

t−1
μ(s)ds = |V|

∫ t

t−1
μ(s)ds (7.9)

where we used that the exogenous intensity is identical across all nodes. Assuming that μ(t) is approximately

constant over the course of one day, we get M(t) = |V|μ(t). Hence we obtain the following form for the
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exogenous intensity:

μ(t) = μ0

[
1+ 0.43sin

(
2π

365.24
t+ 4.36

)]
(7.10)

where μ0 = A/|V|.

Learning the Optimal Model Parameters

Using the exogenous intensity, the log-likelihood now depends on three parameters {α, β, μ0}. Finding the

maximum likelihood estimate of these parameters amounts to solving the following optimization problem:

α̂, β̂, μ̂ = argmax
α,β,μ

L(α, β, μ|ε) (7.11)

Unfortunately, the function L(α, β, μ|ε) is not jointly concave in its three arguments. We will, however, exploit

the following fact.

Proposition 1. The function (α, μ0) 7→ L(α, β, μ|ε) is concave.

Proof. Expanding the terms in Equation 7.6, it is clear that the second sum is linear in {α, μ0}. Hence it is

sufficient to show that for 1 ≤ i ≤ N:

h(α, μ0) = log

μ0

[
1+ 0.43 sin

(
2π

365.24

)]
+

∑
j:tj<ti

αdist(u, v)−2fβ(t)

 (7.12)

is concave. For this, we see that the operand of the log function is linear in {α, μ0}. By composition with the

concave function log, we obtain that h is concave and thus conclude the proof.

We observed numerically that has many local optima; hence we solve Equation 7.11 using the following

heuristic:

1. We perform a brute force grid search to locate good starting points for the refining heuristic.

2. Starting from the best point obtained during the first step, we refine the solution by alternated minimiza-
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tion. First, optimize over {α, μ0} for a fixed value of β. By Proposition 1 we were able to use standard

convex optimization (gradient descent, in this case) to solve this step exactly. Second, optimize over β

for a fixed value of {α, μ0}, using simulated annealing.

Other heuristics were considered: using gradient descent as well for the optimization over β, or using global

gradient descent to optimize over {α, β, μ0} at the same time. All heuristics led to the same optimal solution,

indicating that our initial grid search was precise enough to identify good starting points. We obtained the

following values of the parameters at the optimum:

α = 7.82× 10−3, β = 3.74× 10−3, μ0 = 1.19× 10−5 (7.13)

Validation on Simulated Data

In order to validate our approach for learning the Hawkes model parameters, we evaluated our method on

synthetic data. Starting from the same co-offending network as in the dataset (i.e. the LCC), we generated

synthetic contagion events by simulating the Hawkes contagion model described in Section 7.2.4 [356]. The

model parameters are fixed to the values obtained in Equation 7.13.

We then computed the maximum likelihood estimator described in Section 7.2.5 on the synthetic contagion

events and compared the inferred parameters to the true values used during the simulation. To analyze how

our estimates converge as we observe more data, we truncated the synthetic dataset at increasing time horizons

between 0 and 3,000 days (our study period spanned 3,012 days) and trained the maximum likelihood estimator

separately on each truncated dataset.

We performed this procedure five times to generate five independent sets of synthetic contagion events (Fig-

ure 7.7). We observed that the inferred parameters for α and β vary for short study periods but quickly converged

toward the optimal value as the study period increases. The learned parameters for μ0 are close to optimal even

for short study periods. After 3,000 days, all inferences for α were within 10.8% of the true value, all inferences
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for β were within 12.7%, and all inferences for μ0 were within 2.1%. The mean parameters for each parameter

from the five trials at 3,000 days were all within 1.8% of the optimal value. These results indicate that our param-

eter inference method was able to reliably determine the parameters of a Hawkes model over the study period

length used.
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Figure 7.7: Learned parameters relative to optimal from five simulations of the Hawkes contagion process. We simu-

lated five Hawkes contagion processes over the LCC using the parameters found in Equation 7.13. Using the method in

Section 7.2.5, we learned the parameters that best describe the simulated data and compare these to the actual value.

The dashed black lines indicate that the optimal result is for the learned parameters to be identical to the parameters

actually used. Colored lines show the learned parameters relative to optimal for each simulated dataset as we observe

a different number of days. We observe that the inferred parameters for α and β vary notably for short study periods
but quickly converge toward the optimal value as the study period increases. The learned parameters for μ0 are close
to optimal even for short study periods. The means of the learned parameters from the five trials at 3,000 days are all

within 2%of the optimal value, indicating that our parameter inferencemethod is able to determine the parameters of a

Hawkesmodel over the actual study period.

7.2.6 Inferring the Pattern of Infections

Using parameters calibrated on the observed data, our model calculated each person’s exposure to gun violence

based on the aggregate influence of social contagion and seasonal factors. For each gunshot victim who was

influenced primarily by contagion, we identified which peer (the infector) was most responsible for causing them

to become infected (i.e., shot). We then connected these infections from infector to victim to trace cascades of

gunshot victimization through the network, i.e., chains in which one person becomes infected, exposing his or her
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associates, who then may become infected and spread the infection to their associates, and so on (Section 7.2.4).

It is important to note that the infector is not assumed to be the one who shoots the victim, but rather the one

who exposes him or her to the risk of victimization.

Given fitted values of the parameters of the Hawkes contagion model, we then determined whether each

infection event (t, v) was more likely to have been caused by the exogenous background rate or endogenous peer

contagion. Using Equation 7.1, we compared the value of the exogenous and endogenous intensities at the time

t of infection, and attributed the infection event to the larger of the two quantities. In other words, we compared:

μ(t) = 1.19× 10−5
[
1+ 0.43sin

(
2π

365.24
t+ 4.36

)]
(7.14)

with ∑
u ̸=v

φu,v(t) (7.15)

and attributed the infection to peer contagion if Equation 7.15 >Equation 7.14.

For infection events (t, v) attributed to peer contagion, we could single out a single peer event as the individual

most responsible for transmission. This was achieved by choosing the peer û with the strongest social influence

on v at time t. That is,

û = argmax
u

[
φu,v(t)

]
(7.16)

Through this method uncovered the pattern of infections: each infection event is attributed to either the

exogenous intensity or a single past infection event. We draw an edge from each infection event to all other

infections that it spawns. We note that edges are directed forward in time, making cycles impossible, meaning

that every connected component in this infection network is a tree. We referred to each tree in the forest of

infections as a cascade.
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The Timing of Infections and Co-Offending

Previous research suggests that co-offending represents strong and enduring relationships between individu-

als [502]. We therefore treated co-offending as evidence of an existing relationship between two individuals

involved rather than as a point-in-time estimate of when that relationship formed, and accordingly generated

static edges in the network representing that two individuals co-offended together at any time during the study

period. Nonetheless, it is useful to evaluate the temporal relationship between when an individual is infected

by an associate compared to when the two first co-offended together, to ensure that the typical timing of these

two events supports this modeling decision. We considered all contagion events (as inferred in Section 7.2.6)

between first-degree neighbors and found that 77.1% of all infected individuals had been co-arrested with their

infector before being shot (Figure 7.8). Many of these infections occur in the immediate aftermath of being

arrested with a recent victim. Another 10.8% of victims were shot in the year immediately preceding their first

co-arrest with the infector. These results indicate that, even discounting prior research studying the close ties

that generally exist between people before co-offending, our findings of contagion are not merely artifacts of the

static network.

Causality in the Hawkes Model

The notion of causality has been the subject of many debates [388]. With this in mind, we should qualify the

previous assignment of a single cause to certain gunshot victimizations.

In discussing the definition of causality, Ned Hall proposed the following thought experiment: “Suzy and

Billy, two friends, both throw rocks at a bottle. Suzy is quicker, and consequently it is her rock, and not Billy’s,

that breaks the bottle. But Billy, though not as fast, is just as accurate: Had Suzy not thrown, or had her rock

somehow been interrupted mid-flight, Billy’s rock would have broken the bottle moments later” [209].

According to some interpretations of causality, within this scenario Suzy and Billy are jointly responsible for

the bottle breaking: they were both throwing rocks at it, and the fact that Suzy’s rock reached the bottle first is
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Figure 7.8: Temporal difference between co-offending and the transmission of gunshot victimization. The values here

indicate the number of days between co-offending and being victimized, among caseswhere ourmodel determined that

a victim was infected by a first-degree neighbor. Positive values indicate that the victim was infected after having pre-

viously co-offending with the infector. As is clear from the figure, the majority of infections (77.1%) that we detected

between first-degree neighbors occurred after the infector and victim had already been arrested together. Among the

victims who were shot before co-offending with their infector, 47.5% co-offended with the infector within a year of be-

ing infected. These results, combinedwith previous research on the enduring nature of co-offending relationships [502],

confirm the validity of modeling the contagion process over a static network.

coincidental. However, it also clear that Suzy’s rock shattered the bottle. Even if we had not observed the rock

that first hit the bottle, since Suzy was throwing rocks more quickly than Billy we could say that the rock that

shattered the bottle was more likely to have been thrown by Suzy.

The Hawkes contagion model can be re-interpreted in light of this example: as they become infected, victims

begin to “throw rocks” at their associates with a frequency that decreases over time. Being shot due to peer

infection is equivalent, in this metaphor, to being hit by a rock thrown by an associate. Since we do not observe

whose rock hits first, the only thing we can say for certain is that at the time of victimization an individual was

subject to the combined throws of his or her previously-infected neighbors. This combined effect is expressed

mathematically by the sum in Equation 7.1.

It is now clear which interpretation to give the cascades extracted in Section 7.2.6: it is a simplification where

141



we designate the cause for victimization to be the associate who was “throwing rocks” with the highest frequency

at the time of infection. This simplification is acceptable in that this associate is the most likely to be the direct

cause of infection. Nonetheless, based on another interpretation of causality we would instead consider the

throws from every associate to be jointly the cause of victimization.

7.2.7 Model Evaluation: Predicting Victims

We compared the Hawkes contagion model with a traditional demographics model by evaluating how effectively

each model predicts who will be shot on a given day. Given that social services must make targeted interven-

tions with limited resources, predictions of gunshot victims are only actionable if they precisely identify a small

population that faces the highest risk to be shot. With this in mind, the proper evaluation for any model is its

ability to identify future victims as part of the population’s highest-risk community [76, 345]. For this study,

we define three “high-risk communities” as those people identified with the top 0.1%, 0.5%, and 1.0% of risk

to become infected. These correspond to populations with 138, 691, and 1,382 individuals from the largest

connected component, respectively.

We compared the predictive abilities of three different models:

Demographics Model: This model uses each person’s demographic features and risk factors to predict who

will be infected on a given day. We include all features available in our data, capturing many of the variables

shown to be most critical in predicting gunshot victimization [480]. We label as infected all people who have

been shot before that date and label all others as non-infected. We then perform a logistic regression over the

entire population, using the formula victim sex + race + age + gang.member + gang.name +N.prior.arrests + neighborhood

(while additional features would surely have been useful, we unfortunately did not have access to any variables

beyond these). The resulting probabilities correspond to the background rate of the Hawkes contagion model

and identify each person’s risk to be shot.

Contagion Model: This model uses the social contagion element of the Hawkes model to identify who is
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at most risk to become infected on a given day. It accounts for the network structure and infection history, but

ignores all demographic and environmental attributes. Based on the observed pattern of gunshots, we measure

each person’s exposure to violence at a given time.

Combined Model: This model uses the results from the demographics and network models. We combine

the risk scores from the other two models using a weighted sum, generating a fully specified Hawkes contagion

model for the spread of gunshot violence through the co-offending network.

For every day of the study period, we executed all three models to predict each person’s likelihood to be shot

on that day. We then identified (based on the data) the people who were actually shot on the current day of the

trial and noted their relative risk in the population of co-offenders according to each model. For each model, we

ended up with the rankings of all the victims on the day they were shot. We compared the different models by

measuring how often they select victims when identifying the network’s high-risk population. An ideal model

would identify each day’s N victims as the individuals with the N highest levels of risk.

7.3 Results

7.3.1 Characteristics of the Network

Table 7.1 shows characteristics of the 138,163 people in the Network. Figure 7.9 provides a graphical represen-

tation of the Network, showing the relative locations of victims and non-victims. Individuals were on average 27

years old at the midpoint (in 2010) of the study, and predominantly male (82.0%) and Black (75.6%). According

to police estimates, 26.2% were members of street gangs. Compared to non-victims, the victims of gunshots

were 3.8 years younger (23.2 vs. 27.0 years) and more likely to be male (97.0% vs. 80.9%), Black (79.8% vs.

75.3%), and involved in a gang (52.3% vs. 24.3%). Consistent with prior research [385], gunshot victimization

was highly concentrated within the network. Gunshot victims were socially close to other gunshot victims in

the Network: 17.9% of victims’ first-degree associates were also victims, compared to 9.8% for non-victims.
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LCC Victims Non-Victims

Demographics
Number of people 138,163 9,773 128,390
Age at study midpoint 27.5 23.2 27.0
Percent male 82.0% 97.0% 80.9%
Percent Black 75.6% 79.8% 75.3%
Percent white/Hispanic 23.3% 19.5% 23.6%
Percent gang member 26.2% 52.3% 24.3%

Network characteristics
Number of co-offenders (degree centrality) 6.1 10.2 5.7
Percent of neighbors who are victims (degree=1) 10.4% 17.9% 9.8%
Percent of neighbors who are victims (degree≤2) 11.1% 15.9% 10.7%
Percent of neighbors who are victims (degree≤3) 11.8% 14.9% 11.6%

Table 7.1: Characteristics of the 138,163 Individuals Arrested in Chicago from 2006 to 2014 and in the Largest Con-

nected Component (LCC) of the Network. All comparisons between gunshot victims and non-victims were P<0.001 (P-

values were calculated using theWelch Two Sample t-test).

This pattern was similar for second- and third-degree associates as well (see Table 7.1), indicating that there were

clusters in the network with many victims and other parts with few victims.

7.3.2 Alternative Explanations

Our comparisons of simulations with the data show that homophily and confounding cannot fully explain the

concentration of gunshot victims within the network (Figure 7.10). As reported in the main text, these pairs are

shot on average 60 days closer together than the simulations can explain. We similarly found that the median time

difference between victimizations is 75 days shorter in the data than in the simulations. We then evaluated how

many pairs become victims within a specific, short period of time. While 7.6% of pairs in the data became victims

within 30 days of one another (N=726), there were only 4.0% (3.7%-4.4% 95CI) such pairs in the simulations.

Homophily and confounding, then, explained only 52.6% of the gunshot victimization that occurred between

associates within 30 days. Similarly, 17% of pairs in the data became victims within 100 days of one another,

compared to only 12% in the simulations. These results indicated that victims are clustered both temporally and
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Figure 7.9: Graphic Representation of the Largest Connected Component of the Network. Each node represents a

unique individual (N=138,163). Red nodes identify victims of a fatal or non-fatal gunshot injury (N=9,773); blue nodes

represent people whowere not victimized (N= 128,390). Data are from the Chicago Police Department as described in

the text.

topologically in a manner that homophily and confounding cannot fully explain. This suggested that considering

social contagion may help explain when and where victimizations occur in the network. We turn in the next

section to modeling this social contagion directly.

7.3.3 Modeling Contagion

The distribution of the cascade sizes extracted from our dataset can be seen in Figure 7.11. Consistent with

previous findings in related domains [80, 298], this distribution follows a power-law of exponent 1.8.

After calibrating our model to the data, we found that 63.1% (N=7,016) of the 11,123 gunshot victimizations

in the Network during the study period were attributable to social contagion. This distribution was similar for

both fatal (60.8%, N=829) and non-fatal injuries (62.6%, N=6,187). We found that 46% of infections came

from first-degree neighbors, 41% came from second-degree neighbors, and the remaining 13% of infections
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Figure 7.10: Results from10,000MonteCarlo simulations of the study periodwithout any social contagion. These plots

display the temporal relationships between infections for all pairs of first-degree neighbors where both people were

gunshot victims during the study period. Vertical red lines represent the observed values from the data. Simulations

based on homophily underestimate by a large margin how many pairs will be infected close together in time, and can

explain only 52.6% of infections that occur within 30 days of each other. The mean time between infections is 60 days

shorter in the data than in the simulations.

came from third-degree neighbors. Victims were shot on average 125 days after their infector (the person most

responsible for the victim being exposed to gunshot violence), with a median time difference of 83 days.

From tracing gunshot victimization through the network, we detected 4,107 separate cascades (connected

chains of infection through the network) ranging in size from cascades with a single person to a cascade involving

469 people, with 680 cascades involving multiple people and a mean cascade size of 2.7 people (Figure 7.11).

Figure 7.12 depicts three representative cascades, containing 12 people, 34 people, and 64 people, all shot during

the study period and showing the pathways of diffusion between individuals. These cascades visually reinforce

how gunshot victimization spreads through a co-offending network, connecting individuals who initially had no

connections to one another. They also help to explain the concentration of victims as shown in Table 7.1 and
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Figure 7.11: Distribution of cascade sizes found in the network. Cascade sizes ranged from 1 (N=3,427, 83.4%) to 469

(N=1), with amean size of 2.7 people. The distribution follows a power lawwith scaling exponent 1.8.

Figure 7.9, since victimizations in one part of the Network generate further victimizations in that same region.

7.3.4 Predicting Victimization

Figure 7.13 shows a comparison of the three models to predict gunshot victimization: a model based on demo-

graphics, a model based on contagion, and a model based on both demographics and contagion. The contagion

model outperformed the demographics model at estimating an individual’s risk to be shot (Figure 7.13). Over

the study period, the contagion model identified 5.3% of the Network’s victims (N=589) among the 1.0% of the

population it deemed highest-risk each day, compared to 4.3% (N=475) identified by the demographics model

(24.0% increase). The combined model performed best, identifying 6.5% of victims (N=728) when selecting

the 1.0% highest-risk population daily. Compared to the demographics model, across the three daily high-risk

population sizes considered (0.1%, 0.5%, and 1.0%), the combined model correctly identified 71.7%, 65.5%, and

53.3% more victims, respectively.

Figure 7.14 plots the cumulative distribution function for each model. The contagion model outperformed

the demographics model for the high-risk quarter of the population (identifying more than half of the victims
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Figure 7.12: Three Cascades of Gunshot Victimization Inferred From The Study Period. Each edge (a line with small

arrow showing direction) represents the transmission of gunshot victimization fromone individual to another. The origi-

natorsof each cascadeare red; all other individuals infectedaspart of the cascadeareblue. These cascades represent (A)

12 people shot between May 2009 and December 2012, (B) 34 people shot between February 2008 and August 2012,

and (C) 64 people shot between August 2008 andMarch 2014.

Figure 7.13: Predictions of Individual Risk of Gunshot Victimization Among High-Risk Populations. Comparison of the

ability of the three models to identify victims as one of the highest-risk individuals in the Network on the day that the

victimwas shot; predictions for the 0.1%, 0.5%, and 1% of individuals at highest risk are shown.
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Figure 7.14: Cumulative distribution function for the demographics, contagion, and combined prediction models. The

x-axis represents a population size and the y-axis reports what fraction of victimswaswithin the high-risk population of

that size. Among the highest-risk 20,000 people, for example, the demographics model identifies 39.9% of victims, the

contagionmodel identifies 41.3%, and the combinedmodel identifies 43.9%. Overall, the contagionmodel outperforms

the demographics model for high-risk quarter of the population (identifying more than half of the victims in this group),

while the demographics model outperforms the contagion model for the rest of the population. The combined model

reaps the benefits of bothmodels, and performs best across the entire distribution.

in this group), while the demographics model outperformed the contagion model for the rest of the population.

The combined model reaped the benefits of both models, and performs best across the entire distribution. This

shows that the contagion model is best equipped to predict future victims when focused on the portion of the

population that faces the highest risk. Given that the goal of predicting victims is to provide social services with

a small population for targeted interventions, the contagion and combined models are more effective than the

traditional demographic model.
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7.4 Discussion

Comparing levels of gun violence in the United States and its concentration within communities to an epidemic

garners wide appeal but, scientifically, often stops at descriptive and spatial analyses. Whereas previous research

has been cross-sectional, the current study advances understanding of gun violence by modeling it as social con-

tagion and by directly tracking the contagion’s spread. Our findings suggest not only that gunshot victimization

concentrates within certain populations, but also that the diffusion of victimization follows an epidemic-like pro-

cess of social contagion that is transmitted through networks by social interactions. Violence prevention efforts

that account for contagion in addition to demographics to identify likely victims have the potential to prevent

more shootings than efforts that focus only on demographics.

Our research suggests that a holistic public health approach to gun violence should be developed in at least

two ways [227]. First, violence prevention efforts should consider the social dynamics of gun violence: tracing

the spread of victimization through social networks could provide valuable information for public health and

medical professionals, in addition to law enforcement, looking to intervene with the people and communities

at highest risk. Given that public health and epidemiology are founded on studying pathways of transmission,

approaches from these domains may readily extend to gun violence prevention efforts. For example, information

on the timing and pathways of gunshot cascades might provide street outreach workers of campaigns such as

Cure Violence (a violence preventionmodel, used inmore than 50 U.S. cities, that draws on public health methods

to mediate conflicts before they become violent) with a more accurate assessment of the people who would most

benefit from their program [66]. Likewise, hospital-based violence intervention programs [81, 407] might follow

such network models to extend their services beyond the emergency room to others within a social network who

are also at risk of becoming gunshot victims.

Second, concerted efforts should focus onmaking gun violence prevention efforts victim- rather than offender-

focused—namely, prioritizing the health and safety of those in harm’s way. Although mounting evidence from
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multiple cities suggests that small place-, group-, and network-based interventions can effectively reduce gun vio-

lence [52, 103, 270, 383], these network-based approaches have often relied heavily or solely on law enforcement

activities. The individuals identified in our study are not just in contact with the criminal justice system—they are

also deeply embedded within the public health, educational, housing, and other governmental systems. A fully

realized victim-centered public health approach includes focused violence-reduction efforts that work in concert

with efforts aimed at addressing the aggregate risk factors of gun violence—the conditions that create such net-

works in the first place or otherwise determine which individuals are in such networks (such as neighborhood

disadvantage and failing schools).

Several limitations of our study should be noted. First, we lacked additional data that might have been rel-

evant to understanding individual and neighborhood risk factors, such as substance abuse, employment, and

police activity. Thus, our models may have underestimated the predictive ability of demographic and ecological

risk factors. Second, although our descriptive findings of the Chicago co-offending network were quite similar to

those from Boston and Newark [381, 382], additional research is needed to understand how city-specific factors

like segregation, public housing policies, street gangs, and the availability of guns might influence both the struc-

ture of social networks and the transmission process related to gun violence within them. Finally, our study relied

on a single behavioral tie, co-offending, and thus failed to capture other social ties (such as kinship, friendship,

employment, and gang membership) that might also facilitate the contagion process or else protect individuals

from infection. Specifically, we were unable to assess why some individuals in the social network—indeed, the

vast majority—never became gunshot victims. Understanding resilience in networks is an important next step

for research and practice, and future research should expand its focus on the types of networks that foster and

abate the contagion of violence. Developing our understanding of resilience in networks might advance a pre-

ventative approach to mitigating the effects of gun violence that looks not simply to respond to shootings that

have already happened, but to bolster networks that might inoculate from the potential for future shootings.

In conclusion, we analyzed administrative records to show how modeling gun violence as an epidemic that
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spreads through social networks via interpersonal interactions can improve violence-prevention strategies and

policies. Our results suggest that an epidemiological approach, modeled on public health interventions developed

for other epidemics, can provide valuable information and insights to help abate gun violence within U.S. cities.
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Part III

Reform
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Chapter 8

TheFalse Promise of Risk Assessments: Epis-

temic Reform and the Limits of Fairness

8.1 Introduction

As described in the Introduction, the case for criminal justice risk assessments rests on a particular theory of

change: first, that risk assessments will mitigate judicial biases by providing “objective” decisions about defen-

dants, and second, that risk assessments will promote reform to (one aspect of) the criminal justice system by

replacing discriminatory policies and reducing incarceration. Given the centrality of this theory of change to the

use of risk assessments, evaluating risk assessments as an approach to criminal justice reform requires interro-

gating both underlying assumptions. This chapter connects the studies presented in the preceding chapters to

the broader pursuit of criminal justice reform (particularly in the context of pretrial and sentencing).

This analysis requires, as a preliminary step, articulating principles with which to evaluate reform. This is

particularly important given that the notion of “criminal justice reform” is itself contested. Criminal justice
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reform refers broadly to the goal of eliminating or altering policies that lead to mass incarceration and racial

injustice. However, there are divergent views about both the causes of and solutions for these challenges. For

example, police reform efforts range from focusing on deficiencies in African American male culture (reforms

require improving this culture) to the enduring presence of white supremacy and antiBlack racism (reforms

require structural transformations to U.S. society) [62].

While it is expected that any reform effort will involve multiple visions, the rhetorical flexibility of “crim-

inal justice reform” leads to a significant gap between the expansive change that “reform” suggests and the

more minimal shifts that many reformers actually intend. As a result, criminal justice reform rhetoric is often

both “superficial”—“most proposed ‘reforms’ would still leave the United States as the greatest incarcerator in

the world”—and “deceptive”—many so-called reformers “obfuscate the difference between changes that will

transform the system and tweaks that will curb only its most grotesque flourishes” [264].

This chapter evaluates reforms based on the extent to which they address the well-documented structural

causes of carceral injustice. This is the emphasis articulated by the prison abolition movement, which draws on

the slavery abolition movement [117, 332]. Formerly consigned to the outskirts of political discussion, abolition

has been the subject of renewed attention among politicians, the legal academy, social movements, and the media

[19, 416, 286]. Prison abolition promotes decarceration with the aim to ultimately create a world without prisons.

Recognizing the violence inherent to confining people in cages and to controlling people’s lives through force,

abolitionists object to reforms that “render criminal law administration more humane, but fail to substitute alter-

native institutions or approaches to realize social order maintenance goals” [331]. Nor, however, do abolitionists

intend to immediately close all prisons. Instead, abolition is a long-term project to develop “a constellation of

alternative strategies and institutions, with the ultimate aim of removing the prison from the social and ideolog-

ical landscapes of our society” [117]. This involves advocating to end practices such as capital punishment, the

use of criminal records in determining access to housing and voting, and the militarization of police [416] and

to create alternative practices such as transformative justice, democratic and holistic responses to violence, and
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increasing resources for education and healthcare [333].

With the aim of structural decarceration in mind, this chapter interrogates the theory of change motivating

risk assessments. First, building on sociotechnical approaches to objectivity, I demonstrate how the objectivity

promised by risk assessments is a chimera: rather than removing discretion to create neutral and objective decisions,

risk assessments shift discretion toward other people and decision points. Second, drawing on legal critiques of

rights as tools for achieving just outcomes, I describe how risk assessments are an ill-advised tool for reducing the

centrality and legitimacy of incarceration: risk assessments are indeterminate tools that provide no guarantee of

reducing incarceration, are made ineffectual by their individualistic conceptions of risk and bias, and are likely to

legitimize the structure and logic of criminal punishment. Rather than presenting a viable approach to decarceral

criminal justice reform, risk assessments present a superficial solution that reinforces and perpetuates the exact

carceral practices that require dismantling.

Risk assessments can, however, be reinterpreted to point toward more substantive criminal justice reform. A

proper challenge to risk assessments requires not technical or procedural reforms, but an “epistemic reform” that

provides a new interpretation of both risk assessments and the criminal justice system. Thus, having analyzed

the impacts of risk assessments within the criminal justice system, I turn to questioning what risk assessments tell

us about the criminal justice system. Returning to the “fairness” of risk assessments, I reinterpret recent results

regarding the “impossibility of fairness” [82, 278] as an “incompatibility of equality.” These impossibility results

reflect not simply a tension between mathematical metrics of fairness, but instead indicate the fundamental

conflict between approaches to achieving justice: the impossibility of fairness mathematically proves that it is impossible

to achieve substantive equality through mechanisms of formal equality. This epistemic reform challenges the formalist,

colorblind proceduralism at the heart of the criminal justice system and provides an escape from the seemingly

impossible bind of fairness, exposing an expanded range of possibilities toward achieving criminal justice reform.

Moreover, this analysis highlights the severe limitations of fairness as a method for evaluating the social impacts

of algorithms, highlighting in particular how algorithmic fairness narrows the scope of judgments about justice
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and how “fair” algorithms can reinforce discrimination.

8.2 Objectivity

Although objectivity is often used as a synonym for “science” and “truth,” objectivity is only partially aligned

with these terms [116, 395]. The meaning of objectivity comes most directly from its opposition to subjectivity:

the goal behind objectivity “is to aspire to knowledge that bears no trace of the knower” [116]. Yet “[t]his ideal of

mechanical objectivity, knowledge based completely on explicit rules, is never fully attainable” [395]. The prac-

tices followed to produce objectivity are themselves grounded in social norms about what kinds of knowledge

are considered objective. These “methods for maximizing objectivism have no way of detecting values, interests,

discursive resources, and ways of organizing the production of knowledge,” meaning that “nothing in science

can be protected from cultural influence” [214]. Thus, rather than producing knowledge that is truly free from

the trace of any people, objectivity represents “knowledge produced in conformity with the prevailing standards

of scientific practice as determined by the current judgements of the scientific community” [9].

Objectivity in the form of quantification plays a particularly important role in political contexts rife with dis-

trust, in which officials facing external scrutiny need to depoliticize their actions by “making decisions without

seeming to decide” [395]. Particularly in the United States, which is notable for its wariness of individual de-

cision makers, “Techniques such as cost-benefit analysis and risk assessment make it easier to reassure critics

within and outside government that policy decisions are being made in a rational, nonarbitrary manner” [249].

Nonetheless, “Study after study and commentary after commentary [have] called attention to the profoundly

normative character of risk assessment, showing that it is a far from objective method: indeed, that it is a highly

particular means of framing perceptions, narrowing analysis, erasing uncertainty, and defusing politics” [253].

Pretrial and sentencing risk assessments exemplify these attributes of objectivity. As concern about discrim-

ination and mass incarceration intensifies, the criminal justice system faces heightened scrutiny. In order to
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defuse these challenges and depoliticize their actions, criminal justice actors have turned to risk assessments.

Practitioners such as probation officers have reported that risk assessments provide defensible grounds for their

decisions, making them less vulnerable to criticism [210].

Rather than produce knowledge that lacks any trace of subjectivity, however, risk assessments produce infor-

mation (and hence outcomes) that is embedded within political norms and institutional structures. Four aspects

of risk assessments deserve particular attention as sites where their supposed objectivity breaks down and a great

deal of hidden discretion is incorporated: defining risk, producing input data, setting thresholds, and responding

to predictions. These sites of discretion exist in addition to the decisions that are inherent to the development

of every machine learning model (such as selecting training data and model features [27, 194]) or are external

to the risk assessment decision-making process itself (such as choosing what interventions should be pursued in

response to risk). After this section describes these forms of discretion, the next section will analyze how such

discretion hinders risk assessments as a tool for achieving substantive criminal justice reform.

8.2.1 Defining Risk

Risk assessments aim to predict risk, defined as the likelihood of crime. Pretrial risk assessments estimate the risk

that a defendant will be rearrested before trial or will not appear for trial; sentencing and parole risk assessments

estimate the risk that a defendant or inmate will recidivate. Such predictions typically consider a period of time

ranging from six months to two years [326].

Forecasting crime while ignoring the impacts of incarceration causes risk assessments to overvalue incarcera-

tion.1 Releasing someone by definition increases that person’s likelihood to commit a crime in the near future.

If crime risk is the primary criterion, then release will always appear to be adverse.

Yet there are many harms associated with incarceration. Pretrial detention significantly increases a defendant’s

likelihood to plead guilty, be convicted, and receive long prison sentences [133, 224, 314]. Time spent in prison

1In practice, risk assessments are based in data about arrests, which typically represents a racially biased measure of
crime [146, 327].
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is associated with negative outcomes including sexual abuse, disease, and severe declines in mental and physical

well-being [263, 509]. After being released, former inmates face significant challenges in finding work (a barrier

that is stronger for Blacks than whites) [379] and suffer disproportionately from depression, serious disease, and

death [509]. The families and communities of incarcerated people also face severe hardships [176, 219, 506].

Moreover, because incarceration increases one’s long-term propensity for crime, pretrial detention does not

actually reduce future crime [133]. All told, a cost-benefit analysis found that “detention on the basis of ‘risk’

alone can lead to socially suboptimal outcomes” [518].

The emphasis on crime risk also causes risk assessments to absorb the highly racialized meaning of crime. As

numerous scholars and lawyers have shown, the types of behaviors that society views with fear and chooses to

punish are based in racial hierarchies, such that Blackness itself is criminalized [63, 213, 264, 354, 462] and “risk

[is] a proxy for race” [213]. As such, risk assessments subsume the racialized concept of crime into a seemingly

objective and empirical category that should guide decision-making.

8.2.2 Generating Input Data

Some risk assessments rely on information collected by a criminal justice practitioner (e.g., parole officer or

social worker) via an interview with a defendant. For example, the widely-used COMPAS risk and needs as-

sessment incorporates information from interviews that include questions such as “Is there much crime in your

neighborhood?” [367]. Another risk assessment evaluates individuals along categories such as “Community

Disorganization,” “Anger Management Problems,” and “Poor Compliance” [87].

Such questions and categories resist objective answers, turning these assessments into value-laden affairs

in which white, Western, and middle-class standards are imposed on defendants [210, 325]. One’s freedom

can hinge on these assessments: in 2016, an inmate in New York was denied parole due to a rehabilitation

coordinator answering “yes” to the question “Does this person appear to have notable disciplinary issues?”

despite the inmate’s lack of a single disciplinary infraction over the prior decade [507].
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Recognizing that their evaluations influence the calculations and recommendations of risk assessments, many

criminal justice practitioners exercise “considerable discretion” in collecting and interpreting information to pro-

duce what they see as the appropriate final score [210]. One study found that practitioners ignored or downplayed

criminogenic factors in order to produce low risk designations when evaluating minorities who had committed

low-level offenses, but interpreted information so as to produce high risk scores when evaluating sexual or violent

offenders [210].

8.2.3 Setting Thresholds

Once someone’s risk has been predicted, risk assessments turn the forecasted probability into categories (e.g.,

low/medium/high [17]) and number ranges (e.g., 1-5 [311]) to be presented to judges. Notably, no prominent

risk assessment directly presents probabilities [86] or follows the “intuitive interpretation” [146] of dividing

categories across the spectrum of risk (e.g., “low risk” corresponds to 0-33% risk). A related approach is to

define risk categories across population percentile (e.g., COMPAS divides the population into ten equal-sized

groups, assigning each a score from 1-10 [366]).

In most cases, therefore, the thresholds that determine labels such as “high risk” and recommendations such

as “detain” are based in normative judgments about the tradeoffs between reducing incarceration and reducing

crime. Jurisdictions implementing the PSA, for example, determine how to define the ranges of low, moderate,

and high risk [463]. Although there may be benefits to adapting risk assessments to the local context, doing so

introduces a new form of discretion: there is no objective guide for what certain level of risk warrants release

or detention. Across risk assessments, the probabilities corresponding to the highest risk categories vary widely

and can refer to rearrest rates as low as 3.8% [22, 326]. In turn, public officials often do not actually know how

the categories that risk assessments present translate to probabilities of recidivism or failure to appear [264, 281].

These scores and thresholds can have significant impacts on the outcomes of cases. Many jurisdictions directly

tie recommendations to the categories defined in the risk assessment [292, 449]. In Kentucky, for instance, the
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mandatory use of a pretrial risk assessment led to increases in release for low and medium risk defendants and

a decrease in release for high risk defendants [464].

Even if a recommendation threshold is set at the outset of reform to promote high levels of pretrial release,

it can later be altered to reduce pretrial release. In New Jersey, several defendants accused of certain gun charges

were released before trial and then rearrested; the Attorney General’s office then pressured the courts to alter the

risk assessment so that it would recommend detention for every defendant arrested for those same gun charges,

regardless of that person’s predicted risk [235, 440]. New Jersey soon expanded its detain recommendations to

a larger number of offenses [394]. Similarly, in 2017, the United States Immigration and Customs Enforcement

(ICE) altered its pretrial Risk Classification Assessment so that it would recommend “detain” in every case [422].

8.2.4 Responding to Predictions

Regardless of how they present predictions, risk assessments typically play a role of decision-making aid rather

than final arbiter: they provide information and recommendations to judges but do not dictate the decisions

made. Thus, although a common goal behind risk assessments is to eliminate the subjective biases of judges

[495, 99, 406, 340, 245, 460, 471, 474], risk assessment implementations allow judges to decide how to respond

to the information and recommendations provided.

Many judges use this discretion to ignore risk assessments or to use them in selective ways. In both Kentucky

and Virginia, risk assessments failed to produce significant and lasting reductions in pretrial detention because

judges tended to override recommendations suggesting release [464, 465]. Judges in Cook County, Illinois di-

verged from the pretrial risk assessment 85% of the time, releasing defendants at drastically lower numbers than

recommended [319]. A juvenile risk assessment faced similar issues: judges frequently overrode the risk assess-

ment when it recommended release, but rarely when it recommended incarceration, leading to a dramatic and

“chronic” increase in detention [461]. Similar patterns have been observed in Santa Cruz and Alameda County,

California [503].
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When they do use risk assessments, judicial decisions are rife with biases. Two experimental studies found

that people are more strongly swayed by a risk assessment’s suggestion to increase estimates of crime risk when

evaluating Black defendants compared to white defendants (see Chapters 3 and 4). Judges in Broward County,

Florida have penalized Black defendants more harshly than white defendants for being just above the thresholds

for medium and high risk [107]. Judicial decisions made with a risk assessment in Kentucky similarly increased

racial disparities in pretrial outcomes [8].

It is clear that the first assumption behind risk assessments—that they replace biased discretion with neutral

objectivity—does not hold up to scrutiny. Despite being hailed as “objective,” risk assessments shift discretion to

different people and places rather than eliminate discretion altogether. Yet the presence of subjective judgment

is not itself dispositive as an argument against risk assessments. For if the objectivity sought in risk assessment

discourse is impossible, then any reform will rest, to some degree, on discretion. It is therefore necessary to turn

to the second assumption motivating risk assessments and evaluate, with these subjectivities in mind, whether

risk assessments can spur criminal justice reform.

8.3 Criminal Justice Reform

Although advocates tend to assume that risk assessments will promote reform in pretrial and sentencing ad-

judication [495, 217, 393], altering decision-making procedures to promote fairness and objectivity does not

necessarily reduce incarceration and racial discrimination. Sentencing reform offers a striking case of how the

“well-intentioned pursuit of administrative perfection” characteristic of twentieth century civil rights reforms

“ultimately accelerated carceral state development” [354]. In 1984, concerned about the racial disparities pro-

duced by the judicial discretion to set criminal sentences, Congress passed the Sentencing Reform Act, creating

mandatory sentencing guidelines tied to the characteristics of the offender and the offense [315]. This system

was designed to constrain judicial discretion and thereby “provide certainty and fairness in meeting the purposes
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of sentencing” [489]. The reform failed to have the intended impacts, however. The guidelines “set in motion

dramatic changes in day-to-day federal criminal justice operations, largely by shifting a massive amount of dis-

cretionary power from judges to prosecutors” [315]. The result was a “punitive explosion” that increased both

incarceration and racial disparities [315].

Similar reforms throughout U.S. history have centered on the expansion of rights as a mechanism to promote

fair procedures. These rights-based reforms often did not actually notably improve outcomes: for instance,

schools remained segregated and unequal well after the Supreme Court deemed school segregation unconstitu-

tional in Brown v. Board of Education [483]). U.S. legal scholars in the twentieth century therefore developed the

“critique of rights”—a critique of rights-based reforms and discourse in mainstream legal thought. Advanced

by scholars such as Duncan Kennedy [267] and Mark Tushnet [482, 483], the critique of rights revolves around

five assertions: 1) Rights are less effective at spurring progressive social change than commonly assumed, 2)

The impacts of rights are indeterminate, 3) The discourse of rights abstracts away the power imbalances that

create injustice, 4) The individualistic discourse of rights prioritizes individual freedom over social solidarity

and community well-being, and 5) Rights can impede democracy by reinforcing undemocratic relationships and

institutions [78].

Today’s appeals to risk assessments mirror historical appeals to rights: like rights reforms such as the right to

a lawyer, the introduction of risk assessments into bail and sentencing is intended to produce a fair and neutral

process for criminal defendants [495, 217, 361]. This suggests that risk assessments should be interrogated

against the critique of rights. Doing so, I show that risk assessments suffer from the same core limitations as

rights: they are indeterminate, individualistic, and legitimizing.

8.3.1 Indeterminate

Although risk assessments are often hailed as objective, a great deal of subjective judgment resides under the

surface of these tools. This discretion can dramatically alter the use and impacts of risk assessments. In this
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sense, risk assessments are indeterminate: the adoption of risk assessments provides little guarantee that the

intended social impacts will be realized.

Indeterminacy is a common feature of decision-making processes grounded in rules and procedures [483].

Procedural reforms often fail to generate the intended outcomes because they use technical means to achieve

normative ends. Achieving the desired outcomes requires a particular use of the tool or process, yet nothing about

the procedures guarantee that such use will arise in practice. As noted in the critique of rights, the adoption of

a progressive law provides little guarantee of the political outcomes seemingly connected to that law; instead,

broader social circumstances largely dictate how that law will be wielded, interpreted, and applied. And “if

circumstances change, the ‘rule’ could be eroded or [even] interpreted to support anti-progressive change” [483].

Risk assessments are unreliable as tools for reducing incarceration because they depend on the social and

political circumstances of their use. Risk assessments are embedded in the criminal justice system, in which the

structural and political incentives largely favor punitive and carceral policies [10, 61, 63, 465]. Thus, to the extent

that the types of subjectivity described in Section 8.2 manifest in risk assessments, such discretion typically

resists decarceral goals. Definitions of risk emphasize incarceration as a way to reduce crime while ignoring

the significant harms of incarceration. Interviews and evaluations allow white and middle-class assumptions

(which typically associate Blackness with crime, aggression, and a lack of innocence [178, 182, 358, 408]) to

influence judgments about defendants and inmates. The practice of defining thresholds allows for people with

low probabilities of rearrest to be labeled “high risk” and for recommendations to be altered to reduce howmany

people are released. Judicial responses to risk assessments exacerbate racial disparities and diminish release rates.

These forms of discretion make the impacts of risk assessments brittle and prone to political capture. Achiev-

ing decarceral outcomes through risk assessments requires particular behaviors and circumstances which the

criminal justice system is generally not amenable to. As a result of this indeterminacy, risk assessments provide

no guarantee of reducing incarceration and in fact are often wielded in ways that resist decarceral outcomes. Yet

because of the discourse that positions risk assessments as a tool for reform, even ineffective implementations
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may enhance perceptions of fairness and reduce the political will for more systemic changes.

8.3.2 Individualistic

Risk assessments are based on individualistic conceptions of both risk and bias that lead to individualistic and

ineffectual remedies for racial discrimination and mass incarceration.

Risk assessments treat risk at the level of individuals, defining risk in terms of someone’s likelihood to be

arrested in the future. This approach treats risk as a measure of difference across individuals—an objective and

static fact of identity—rather than as a social category defined through social norms (what is considered a crime)

and relations (why certain people commit and are punished for those crimes).

Although numerous social markers of difference are accepted as “intrinsic” and “natural,” many of these

categories emerge from social arrangements that imbue those comparisons with meaning and importance [341].

In particular, “difference” becomes salient when “a more powerful group assigns meaning to a trait in order to

express and consolidate power” [341]. For example, “[w]omen are compared with the unstated norm of men,

‘minority’ races with whites, [and] handicapped persons with the able-bodied” [341]. Addressing difference

equitably requires not providing special treatment (whether ameliorative or punitive) to “different” individuals,

but altering the relationships and institutions that structure these categories [341].

Risk assessments focus on individual-level risk, leading them to suggest individual-level interventions. Calcu-

lating each person’s risk differentiates risk factors across members within a population, but obscures the structural

factors that shape the distribution of risk itself [405]. In other words, risk assessments make legible the idea of

high-risk individuals rather than high-risk populations. As a result, risk assessments justify individualistic responses:

most notably, incarcerating high-risk people. Yet it is precisely population-level reforms such as improving ac-

cess to housing, healthcare, and employment that are most likely to reduce crime risk and improve well-being

across the population [211, 225, 391, 431, 432].

Because risk assessments focus on individuals, they can entrench historical injustice by failing to recognize
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changing social circumstances. Risk assessments (as with all machine learning) assume that population charac-

teristics are constant, such that factors producing certain outcomes in the past will produce those outcomes at

the same rates in the future. Even if jurisdictions enacted reforms that reduce crime, risk assessments would

be blind to these new circumstances. In turn, risk assessments would overestimate crime and recommend in-

carceration for individuals whose crime risk has decreased. Following interventions such as text messages that

remind defendants to appear in court, risk assessments have produced “zombie predictions” that overestimate

risk because they fail to account for the risk-reducing benefits of these reforms [281]. And because incarceration

increases the likelihood of crime after someone is released [111, 120, 497], these false positive predictions will

exacerbate the cycle of recidivism and incarceration that risk assessments are meant to remedy.

Risk assessments suffer from a similarly individualistic approach to bias: they diagnose bias as a behavior

exhibited by individuals, typically due to implicit bias. Risk assessments are therefore designed to replace the

discretion of biased judges with “objective” algorithmic predictions [495, 99, 406, 340, 245, 460, 471, 474].

Yet this emphasis on the bias of individuals overlooks the policies and institutions that structure racial hierar-

chies. Discrimination and oppression are produced not simply by people making biased judgments, but through

laws and institutions that systematically benefit one group over another [10, 264]. Diagnosing discrimination as

the product of discretion and bias “displace[s] questions of justice onto the more manageable, measurable issues

of system function” [354], thus “obscur[ing] the larger structural aspects of racism” and “draining attention and

resources away from other approaches to framing and addressing racism” [258].

By focusing on judicial decisions as the source of discrimination, risk assessments shroud the social structures

and power dynamics behind racial discrimination. They obscure the need to transform policies and institutions in

order to achieve racial equity, instead suggesting that discrimination can be remedied by altering decision-making

procedures. Attempts to address racial oppression that focus solely on the bias of individual decision makers

serve to legitimize and reinforce that oppression.
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8.3.3 Legitimizing

Despite being implemented under the banner of criminal justice reform, risk assessments naturalize and legitimize

carceral logics (e.g., risky defendants should be held before trial) and practices (e.g., determining which defendants

are “risky”).

Across domains, reforms that address the salient aspects of an injustice rather than the underlying causes

and conditions of that injustice can legitimize those underlying structures. For instance, efforts to eradicate war

crimes such as torture without challenging war itself have “tolerated the normalization of perpetual, if more

sanitary, war” [352]. Closer to criminal justice reform, diversity and implicit bias trainings present a notable

example of how reforms aimed at preventing discrimination can legitimize social arrangements that produce

inequality. Numerous studies have found these trainings to be ineffective at improving diversity or reducing bias

[258]. Instead, by creating “an illusion of fairness” that “legitimize[s] existing social arrangements” [260], the

“formal bureaucratic procedures may reproduce inequality rather than eradicating it” [271].

Individualistic and procedural reforms are particularly prone to legitimization. When it comes to legal rights,

“progressive victories are likely to be short-term only; in the longer run the individualism of rights-rhetoric

will stabilize existing social relations rather than transform them” [483]. This observation, that winning a legal

battle can rely on principles (such as individualism) that hinder long-term efforts for structural transformation,

is known as “losing by winning” [483]. With regard to criminal rights (such as the guarantee that every criminal

defendant be provided with an attorney), “procedural rights may be especially prone to legitimate the status quo,

because ‘fair’ process masks unjust substantive outcomes and makes those outcomes seem more legitimate” [65].

The enactment of such rights “makes it more work—and thus more difficult—to make economic and racial

critiques of criminal justice” [65].

Risk assessments exemplify an individualistic and procedural reform as well as the limits of this approach.

Risk assessments focus on decision-making procedures: their primary concern is not that incarcerating people
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is wrong, but that decisions about which individuals to incarcerate should be reached more empirically and

objectively. This represents a narrow vision of reform, one that attempts to measure risk without bias or error

while upholding the notion that incarceration is an appropriate response to “high-risk” individuals. In other

words, risk assessments focus reform efforts on decisions about individuals while overlooking the structures

shaping that decision, who is subject to it, and what its impacts are. Although presented under the banner of

reform, this type of “[a]dministrative tinkering does not confront the damning features of the American carceral

state, its scale and its racial concentration” [354]. Instead, by tweaking surface-level decisions and providing them

with a semblance of neutrality and fairness, risk assessments are likely to sanitize, legitimize, and perpetuate the

criminal justice system’s carceral and racist structure. From the perspective of decarceration and racial justice,

the enactment of risk assessments represents a clear example of “losing by winning.”

This process of legitimation can be seen most clearly with regard to preventative detention (detaining a crim-

inal defendant before trial due to concerns about crime risk). The practice was not deemed constitutional until

the 1987 U.S. Supreme Court case United States v. Salerno [26, 281, 518]. Yet today the practice of preventative

detention—which Supreme Court Justices Marshall and Brennan deemed “incompatible with the fundamental

human rights protected by our Constitution” [492]—is being legitimized as a central aspect of “modern” [361]

and “smart” [494] criminal justice reforms based on risk assessments. Through such logic, the use of risk assess-

ments as tools for reform “conced[es] Salerno” and “ratifies recent erosions of the fundamental rights of the

accused” [281].

These three attributes of risk assessments—indeterminate, individualistic, and legitimizing—demonstrate the

flaws of the assumption that risk assessments will promote criminal justice reform (at least with regard to any

notion of reform that involves reducing the centrality of punishment and incarceration). These tools are poorly

suited to the task of combatting carceral practices and logics. Despite being presented as a valuable mechanism

for racial justice, risk assessments are akin to the many components of criminal justice reform today that are

oriented around “the margins of the problem without confronting the structural issues at its heart” [264].

168



Thus far I have shown that the theory of change behind risk assessments is deficient: neither of the two core

assumptions, regarding objectivity and reform, withstand close inspection. The question that remains is what

this suggests for pretrial and sentencing reform efforts: How can risk assessments be challenged in a manner

that facilitates a path toward more systemic reform?

8.4 Epistemic Reform

The movement for risk assessments derives not simply from the presence of particular technologies (i.e., big data

and machine learning), but from a particular understanding of social challenges as technological in nature and

amenable to technological solutions. As pressure mounts for criminal justice reform in an era of “technological

solutionism” [349], “technochauvinism” [56], and “tech goggles” [194], what has emerged is a “sociotechnical

imaginary”—a collective vision of a desirable future attainable through technology [254]—that casts criminal

justice adjudication as prediction tasks, ones that algorithms can perform better than humans. Holding together

these imaginaries and technologies is “co-production,” which describes how “the ways in which we know and

represent the world (both nature and society) are inseparable from the ways in which we choose to live in it”

[250]. Through co-production, it is often new technological discourses rather than new technological artifacts that

provide a sense of order in the face of instability [251]. Yet these discourses, however secure and widespread

they may appear, are not static: altering forms of knowledge “can function as strategic resources in the ongoing

negotiation of social order” [318].

This emphasis on discourses in addition to artifacts can inform the appropriate responses to the false promises

of risk assessments. The dangers of risk assessments are not the result of poor implementation, but are instead

inherent to the sociotechnical imaginary that treats criminal justice adjudication as a set of prediction problems.

Under this framing, attempts to generate “better” (i.e., fairer and more accurate) risk assessments are unlikely to

reduce these tools’ fundamental harms. Rather than calling for unbiased risk assessments, then, a more fruitful
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path to diminishing carceral logics and practices is to present an “epistemic challenge” [500] to the sociotech-

nical imaginary around risk assessments. Such an “epistemic reform” can shift our focus from evaluating risk

assessments through the lens of the criminal justice system to evaluating the criminal justice system through the

lens of risk assessments. Doing so can point the way toward more effective criminal justice reforms.

8.4.1 Reinterpreting the “Impossibility of Fairness”

Although it is common to discuss risk assessments and judges using the same language of bias—and even to

directly compare their biases [35, 474]—“bias” has distinct meanings across these two contexts. The bias of a

judge speaks to something individual: the implicit and explicit biases that influence a specific person’s decisions.

The “bias” of a risk assessment, on the other hand, speaks to something structural: the ways in which different

groups of people are systematically filtered to different outcomes.

To understand this distinction, it is necessary to distinguish between two causes of algorithmic “bias”:

1. Human Bias: The first form of “bias” occurs when an algorithm is trained on the decisions of biased

humans—a type of “garbage in, garbage out.” For instance, a risk assessment would be subject to Human

Bias if its training data overestimates the recidivism rates of Black defendants due to over-policing in

Black neighborhoods. Because this algorithm would be learning to reproduce human biases, it seems

appropriate to refer to its decisions as “biased” and to make the comparison with human bias.

2. Population Inequity: The second form of “bias” occurs when an algorithm is trained on population-

level disparities—a type of “inequity in, inequity out.” For instance, a risk assessment would be subject

to Population Inequity if its training data reflects (beyond any distortion from Human Bias) that Black

defendants are more likely than white defendants to recidivate. Because this algorithm would be learning

to reproduce social outcomes that are the product of historical oppression, its discrimination is not akin

to the bias of human decision makers.
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Failing to distinguish Human Bias from Population Inequity can hinder efforts to understand and reduce

algorithmic discrimination.2 Population Inequity is most directly related not to the biases of judges or other

people, but to “the racial inequality inherent in all crime prediction in a racially unequal world” [327].

To see this challenge of making fair predictions in an unequal society, consider the recent statistical results

regarding the “impossibility of fairness” [82, 278]. The results concern two metrics for evaluating fairness. The

first metric is calibration, which states that predictions of risk should reflect the same underlying level of risk

across groups (i.e., 50% risk should mean a 50% chance of rearrest whether the defendant is Black or white).3

Calibration is akin to colorblindness. The second metric is error rate balance, which states that false positive

and false negative rates should be equal across groups. Given these two metrics, the impossibility of fairness

shows that if two groups have different rates of an outcomes, then it is impossible for predictions about those

groups to both be calibrated and have balanced errors. In the context of risk assessments, this means that given

higher crime rates among Black defendants than white defendants, it is impossible for a risk assessment to make

calibrated predictions of risk without having a higher false positive rate (and lower false negative rate) for Black

defendants.

From this perspective, risk assessments appear to be situated within an “impossible” set of tradeoffs [200].

In turn, the impossibility result is often interpreted as a defense of calibrated decision-making. When ProPub-

lica demonstrated COMPAS’ disproportionate false positive rates for Black defendants [17], Northpointe (the

company, now known as Equivant, that created COMPAS) refuted that higher recidivism rates among Blacks

explained the disparity and thereby absolved them from accusations of racial bias. They wrote, “This pattern

does not show evidence of bias, but rather is a natural consequence of using unbiased scoring rules for groups

that happen to have different distributions of scores” [130]. Other scholars have similarly pointed to the incom-

2Another paper has made a similar distinction, between 1) “racial distortions in past-crime data relative to crime rates”
and 2) “a difference in crime rates by race” [327]. The two phenomena can also coexist: they are distinct but not mutually
exclusive.

3A related measure is predictive parity, which states that the outcome rates among people labeled “high risk” should be
the same across groups.
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patibility of fairness metrics to dispel claims that algorithms are discriminatory [35, 99, 474].

Yet the problem of discrimination is not so neatly resolved by reference to the underlying base rates: the

disparities in these population-level statistics are themselves the product of discrimination. African Americans

do not just “happen to have different distributions of scores”—Blackness itself is criminalized [63, 213, 264,

354, 462] and Blacks have been subjected to myriad forms of oppression (including redlining and segregation

[424], the war on drugs [10, 264], and severe underfunding of schools [147]) that contribute to increasing crime

[284, 308, 420, 430].

Notions of fairness in risk assessments generally fail to consider such context, however. In both research

and practice, calibration is the typical instantiation of fairness [101, 130, 327]. Yet calibration strives for accurate

predictions of risk, regardless of the factors structuring that risk. Risk assessments thus overlook the social

conditions behind racial disparities, striving to accurately identify risk without interrogating whether that notion

of risk is appropriate, why some people have high levels of risk, or whether incarceration is an appropriate

response for high-risk people. Rather than being blind to color, calibrated risk assessments are blind to structural

oppression.

Consider the gold standard: a hypothetical risk assessment that predicts with perfect accuracy whether each

person will recidivate.4 Such a risk assessment would satisfy all three metrics of fairness that are typically in

tension [278]. The impossibility would disappear. Yet this risk assessment would still disproportionately label

Blacks as “high risk” compared to whites—not because of Human Bias, but because of Population Inequity:

due to discrimination and the racialized meaning of “crime” and “risk” [63, 213, 264, 354], African Americans

are empirically at higher risk to commit crimes [96, 431, 452, 487]. In other words, because “[r]acism is not a

mistake, not a matter of episodic, irrational behavior” [121], eliminating inaccurate predictions will not eliminate

racist predictions.

Herein lies the danger of overlooking Population Inequity: accounting only for Human Bias, even with a

4For the sake of this example, suppose that the training data and outcomes reflect an accurate and unbiased measure
of crime (i.e., there is no Human Bias).

172



“perfect” risk assessment, would still subject Blacks to higher rates of incarceration than whites. This “fair” algo-

rithm launders the products of historical discrimination into neutral and empirical facts, in turn reinforcing this

discrimination by punishing African Americans for having been subjected to such criminogenic circumstances

in the first place.

This conflict in algorithmic fairness betweenHuman Bias and Population Inequity speaks to amore fundamen-

tal tension between notions of equality: formal equality and substantive equality. This tension runs throughout

debates in areas ranging from equality of opportunity [165] to antidiscrimination [109] to big data [27]. Formal

equality emphasizes equal treatment or equal process: similar people should be treated similarly. Substantive

equality emphasizes equal outcomes: groups should obtain similar outcomes, even if that requires accounting

for different social conditions between groups. In the U.S. legal context, disparate treatment is grounded in

notions of formal equality (or anticlassification) while disparate impact is grounded in notions of substantive

equality (or antisubordination).

By ensuring that individuals who have similar levels of risk are treated similarly, calibration expresses the logic

of formal equality.5 In this sense, calibration aims to account for Human Bias: it strives for predictions that reflect

one’s actual level of risk, untainted by distortions. Alternatively, by ensuring that groups are similarly affected

by false predictions, error rate balance expresses the logic of substantive equality [327]. In this sense, error rate

balance aims to account for Population Inequity: it strives for risk predictions that do not disproportionately

harm one group more than another, regardless of the underlying distributions of risk.

With these parallels in mind, the epistemic reform becomes possible: the “impossibility of fairness” can be

reinterpreted as an “incompatibility of equality.” Because calibration is a measure of formal equality and error

rate balance is a measure of substantive equality, the impossibility result can be restated as a tradeoff between

formal and substantive equality: the impossibility of fairness mathematically proves that, in an unequal society, decisions based

5Although Mayson characterizes calibration as a disparate impact metric, I argue that it more closely aligns with the
disparate treatment logic of ensuring that people with the same risk receive the same score (an equivalence that Mayson
acknowledges) [327].
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in formal equality are guaranteed to produce substantive inequality. Although the impossibility of fairness is typically

taken to indicate that disparate outcomes are the mere byproduct of fair risk assessments [35, 99, 130, 474], this

reframing highlights the opposite: disparate outcomes are the inevitable product of colorblind risk assessments

in an unequal society.

Notably, it is precisely the desire for objectivity that grounds risk assessments in formal equality and makes

them unable to generate substantive equality. Dominant notions of racial equality based in colorblindness de-

veloped from a desire for neutrality and objectivity, in direct opposition to more radical calls for racial justice

from the Black nationalist movement [389]. Because colorblindness entails “the refusal to acknowledge the

causes and consequences of enduring racial stratification” [354], it “creates and maintains racial hierarchy much

as earlier systems of control did” [10]. Thus, just as the law “will most reinforce existing distributions of power”

when it is “most ruthlessly neutral” [316], risk assessments will most entrench racial injustice when they are most

(seemingly) objective.

8.4.2 Implications for Criminal Justice Reform

Statistical arguments that articulate these tensions between formal and substantive equality can challenge fun-

damental inequities in the criminal justice system. The Supreme Court confronted this issue in the 1987 case

McCleskey v. Kemp, in which Warren McCleskey, an African American convicted of killing a white police officer,

was sentenced to the death penalty in Georgia [491]. McCleskey challenged this verdict with statistical evidence

of structural inequality: the death penalty was disproportionately applied in murder cases with Black defendants

and white victims [25].

Despite this evidence, the Supreme Court affirmed the death penalty ruling. It argued that the statistical

evidence failed to demonstrate deliberate racial bias in McCleskey’s case. In the majority opinion, Justice Lewis

Powell wrote, “a defendant who alleges an equal protection violation has the burden of proving the existence of

purposeful discrimination. […] McCleskey must prove that the decisionmakers in his case acted with discrimina-
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tory purpose” [491]. Powell provides a formal equality analysis: the outcome is legitimate as long as McCleskey

was not subject to intentional discrimination.

Powell further justified this outcome by arguing that acknowledging substantive inequality in the face of formal

equality would cause the entire structure of criminal law to crumble. Recognizing that “McCleskey challenges

decisions at the heart of the […] criminal justice system,” he wrote,

In its broadest form, McCleskey’s claim of discrimination extends to every actor in the Georgia

capital sentencing process, from the prosecutor who sought the death penalty and the jury that

imposed the sentence, to the State itself that enacted the capital punishment statute and allows

it to remain in effect despite its allegedly discriminatory application. We agree with the Court of

Appeals, and every other court that has considered such a challenge, that this claim must fail. [491]

The epistemic reform regarding risk assessments can embolden the discourse that Justice Powell recognized

as an existential threat to the criminal justice system. Reinforcing the work of other scholars who have articulated

the tensions between formal and substantive equality with regard to race and sex [109, 122, 317, 354, 389], the

impossibility of fairness provides a mathematical proof of the inherent conflict between formal equality proce-

dures and substantive equality outcomes in an unequal society. Failing to acknowledge the legacy of historical

oppression will allow even “fair” risk assessments to perpetuate racial inequity. As Justice William Brennan re-

marked in his dissent in McCleskey, “we remain imprisoned by the past as long as we deny its influence in the

present” [491].

Furthermore, the systematic nature of risk assessments may allow the incompatibility of equality to carry more

force than the statistical evidence in McCleskey. In McCleskey, the Supreme Court argued that some variation in

the outcomes of similar cases results from the “discretion [that] is essential to the criminal justice process” [491].

Risk assessments are specifically designed to replace judicial discretion with standardized objectivity, however.

Moreover, algorithmic discrimination reflects not the bias of an individual but the systematic filtering of differ-

ent groups into disparate outcomes. To the extent that judgments are standardized by risk assessments, then,
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statistical evidence of racial disparities could become increasingly difficult to defend on procedural grounds of

discretion and could instead be recognized as reflecting structural discrimination.

Such evidence on its own will not function as a “deus ex data” that prompts a restructuring of the criminal

justice system. One lesson to be learned from McCleskey is that social scientific evidence may do very little to

persuade courts to accept claims of discrimination [64]. Indeed, despite ProPublica’s evidence that COMPAS

disproportionately labeled Black defendants with false positive predictions of recidivism, theWisconsin Supreme

Court upheld the use of COMPAS at sentencing in State v. Loomis [514].

Achieving decarceral reform therefore requires emphasizing the interpretation—not just the design—of risk as-

sessments as a site of contest. A focus on reframing notions of crime and criminal justice has long been at the

heart of fights for racial justice. In Black Feminist Thought, Patricia Hill Collins writes that “activating epistemolo-

gies that criticize prevailing knowledge and that enable us to define our own realities on our own terms” is essential

to empowering Black women [94]. Prison abolition similarly aims to dismantle carceral discourses and to create

alternative, emancipatory ones. Prisons are so ingrained in culture and common sense that “it requires a great

feat of the imagination to envision life beyond the prison” [117]. The path toward decarceration therefore re-

quires society “to counter criminological discourses and knowledge production that reify and reproduce carceral

logics and practices” [57].

Risk assessments are often hailed in ways that reify and reproduce carceral logics and practices. Yet by ex-

panding the scope of analysis, it is possible to reinterpret risk assessments to demonstrate the limits of dominant

anti-discrimination frameworks and to identify a path toward more structural criminal justice reform. The em-

phasis on substantive equality enables a reform approach that avoids the seemingly intractable bind presented

by the impossibility of fairness and the false choice between implementing risk assessments and doing nothing

[35, 277, 327]. For when faced with decisions that significantly structure its subjects’ lives, the answer is not to

optimize the formal fairness of that decision but “to renovate the structure [of the decision] itself, in ways large

and small, to open up a broader range of paths that allow people to pursue the activities and goals that add up
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to a flourishing life” [165].

There are countless opportunities to renovate the structure of criminal justice decisions and thereby escape

the “impossible” choices of risk assessments. Criminal justice institutions can change what interventions are

made based on risk assessments, responding to risk with support rather than punishment, as described in Part II.

Reducing pretrial detention and mandatory minimums [174] (reforms which polls suggest are popular [41, 168,

175]) can further diminish the harms and scope of risk assessments. The gaze of risk assessments can be turned

from defendants to the actors and institutions that comprise the criminal justice system [72, 110], enabling a

more structural view of the system’s operations. Governments can implement policies that reduce the risk of

general, pretrial, and inmate populations [118, 225, 281, 484], thus diminishing the role for punitive responses

to risk. The logic behind such reforms is not to reject risk assessments in favor of the status quo, but to reject

the structures underlying risk assessments in favor of decarceral and non-punitive structures.

8.5 Discussion: Algorithmic Fairness and Social Change

Despite their widespread support, risk assessments are based in a deficient theory of change: they provide

neither objectivity nor meaningful criminal justice reform. Risk assessments bear no guarantee of reducing

incarceration—instead, they are more likely to legitimize the criminal justice system’s carceral logics and policies.

Yet because support for risk assessments emerges in part from the sociotechnical imaginary that sees all problems

as solvable with technology, critiques that articulate the technical limits of risk assessments will likely be met by

calls for “better” risk assessments. It is therefore necessary to pursue an “epistemic reform” that challenges the

discourses rather than the technical specifications of risk assessments. The impossibility of fairness can be reinterpreted

as an incompatibility of equality, demonstrating how mechanisms of formal equality in an unequal society lead

to substantive inequality. Seen in this light, risk assessments demonstrate the limits of formalist, colorblind

proceduralism and suggest a more expansive and structural approach to criminal justice reform.
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These arguments highlight the myopia of “fairness” as a framework for evaluating the social impacts of al-

gorithms. Although researchers have tended to equate technical and social notions of fairness, fairness in its

myriad and conflicting meanings cannot be reduced to a single mathematical definition that exists in the abstract,

apart from social, political, and historical context [200]. Guaranteeing these technical conceptions of fairness is

therefore drastically insufficient to guarantee—or even reliably promote—just social outcomes. Two issues in

particular stand out.

First, algorithmic fairness sidelines the social contexts in which decision-making occurs. It treats fairness as

a matter of making accurate predictions but does not interrogate the structures behind why certain people are

prone to the outcome being predicted or what actions are taken based on predictions. With some exceptions

[27, 35, 101, 158], algorithmic fairness debates and metrics hinge on comparing false predictions across groups

[17, 35, 226, 278, 327], the implication being that a perfectly accurate model would eliminate the core problem

of unfairness. Indeed, recent scholarship asserts that “[t]he most promising way to enhance algorithmic fairness

is to improve the accuracy of the algorithm” [226] and that “[t]he largest potential equity gains may come from

simply predicting more accurately than humans can” [277].

Although there are fairness benefits to be achieved through improving the accuracy of predictions, the empha-

sis on accuracy reveals how algorithmic fairness is primarily concerned with Human Bias rather than Population

Inequity. Accurate predictions about an unequal society are typically seen as fair. Yet even a “perfect” risk as-

sessment will reinforce the racial discrimination that has structured all aspects of society. As such, algorithmic

fairness narrows the scope of judgments about justice, removing structural considerations from view. In this

way, algorithmic fairness “mirror[s] some of antidiscrimination discourse’s most problematic tendencies,” most

notably the “fail[ure] to address the very hierarchical logic that produces advantaged and disadvantaged subjects

in the first place” [230]. Avoiding the perpetuation of historical harms through algorithms “will often require an

explicit commitment to substantive remediation rather than merely procedural remedies” [27].

Second, algorithmic fairness fails to account for the trajectory of social change facilitated by algorithms. Al-
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though often intended to improve society, algorithms can—even when satisfying fairness criteria—perpetuate

or exacerbate inequities. Evaluations of fairness do not consider the harms of an individualistic approach to

reform, the potential of algorithmic decision-making to legitimize unjust systems, or the dangers of conceiving

decision-making and reform as technical projects. Instead, an algorithm’s fairness is treated as determinative of

it having fair social impacts; as long as risk assessments can lead to more accurate or fair decisions, the thinking

goes, they are a step in the right direction [35, 191, 474].

Yet creating a more equitable society is not simply a matter of having algorithms generate marginally improved

outcomes compared to the status quo—it requires responding to social challenges with holistic responses that

promote egalitarian structures and outcomes in both the short and long term [191, 194]. As “an aspirational ethic

and a framework of gradual decarceration,” abolition aims not to make the criminal justice system more humane

while retaining its essential structure, but to reduce the need for (and ultimately eliminate) carceral responses to

social disorder [332].

Responsibly developing and evaluating algorithms as tools for social progress requires new methods based in

the relationship between technological interventions and social outcomes. First, recognizing the indeterminacy of

procedural reforms, reform advocates should avoid deterministic assumptions about the impacts of technology.

Rather than viewing technology as a discrete agent of predictable change, reformers should consider the potential

for unexpected impacts and should ground any algorithms used within circumstances conducive to reform. For

instance, drawing on approaches to limiting legal indeterminacy, the implementation of algorithms could be

tied to “sunset provisions” that condition ongoing use of the algorithm to approval based on the results of

algorithmic impact assessments [415]. Second, to counter the harms of individualistic decisions and logics,

computer scientists must develop new methods that recognize and account for the structural conditions of

discrimination, oppression, and inequality. Third, rather than developing tools that are likely to streamline and

legitimize existing systems, algorithm developers should thoughtfully consider what interventions will actually

be effective at promoting the desired social outcomes. In many cases, typical algorithmic “solutions” may be
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counterproductive compared to alternative algorithmic approaches or non-algorithmic reforms.

The challenges raised by questions of algorithmic fairness are not—and must not be—limited to the scope of

analysis presented by algorithmic fairness. Algorithmic decision-making raises fundamental questions about the

structure of institutions and the types of reform that are appropriate in response to injustice. Yet as currently

constituted, algorithmic fairness narrows these debates to the precise functioning at the decision point itself. This

approach overlooks and legitimizes the context that gives structure and meaning to the decision point. In turn,

it leads down a path toward dilemmas that, within this scope, appear intractable. Escaping these false choices

requires that “we question [our] assumptions and try to look at the issues from another point of view” [341].

Approaching algorithms as sociotechnical imaginaries rather than as discrete technologies enables this expanded

scope of analysis. By highlighting the entire context surrounding algorithms as subject to reimagination and

reform, this approach avoids the trap of false dilemmas and makes possible more substantive change. Engaging

in this manner with today’s complex socio-legal-technical environments will inform new paths for algorithms

and for reform, in the criminal justice system and beyond.
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Chapter 9

Algorithmic Realism: Expanding the Bound-

aries of Algorithmic Thought

9.1 Introduction

Computer science faces a gap between its desire to do good and the harmful impacts of many of its interventions.

The challenge for the field is how to account for social and political concerns in order to more reliably achieve its

aims. Our goal in this chapter is to engage with this challenge and to elaborate a positive vision of how computer

science can better contribute to society.

To engage in this task, we consider the relationship between “algorithmic thinking” (how algorithms are canon-

ically taught and understood) and “algorithmic interventions” (how algorithms are deployed to address social

problems). We are specifically interested in interrogating the influence of “algorithmic thinking” on “algorithmic

interventions,” and focus on the application of optimization and machine learning algorithms. The divergent

meanings of “algorithms” within critical discourse and computer science [139] reflects the differences between
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algorithms in theory and the “algorithmic systems—intricate, dynamic arrangements of people and code”—that

exist in practice [445]. Understanding the relationship between these two notions of algorithms thus requires ap-

proaching algorithms as “‘multiples’—unstable objects that are enacted through the varied practices that people

use to engage with them” [444].

Algorithmic thinking can be understood as a mode of reasoning: it shapes how computer scientists see the

world, understand problems, and develop solutions to those problems. Like all methodologies, algorithmics

relies on defining the bounds of its analysis. Considerations that fall within a method’s analytic boundaries are

the subject of “sharp focus” [441]—but when aspects of the world fall outside these boundaries, a method “has

no hope of discovering these truths, since it has no means of representing them” [15]. Thus, as computer science

increasingly engages with social and political contexts, the field has come up against the limits of algorithmic

thinking: computer science lacks the language and methods to fully recognize, reason about, and evaluate the

social aspects and impacts of algorithmic interventions. In turn, even well-intentioned algorithmic interventions

are at risk of producing social harms.

Enabling computer science to responsibly navigate its social effects requires several steps: 1) diagnosing the

attributes of algorithmic thinking and how those attributes lead to harm, 2) evaluating the potential and limits of

current efforts to reform algorithms, 3) describing how the field can expand its epistemic and methodological

boundaries, and 4) articulating the tenets of a computer science practice that is evolved based on the concerns

raised by affected communities and disciplines such as STS. This chapter takes on each of these tasks in turn.

First, we argue that many of the harms of algorithmic interventions derive from the dominant mode of

thinking within computer science, which we characterize as “algorithmic formalism.” Algorithmic formalism

involves three key orientations: objectivity/neutrality, internalism, and universalism. Although often reasonable

(even valuable) within the context of traditional algorithmic work, these orientations can lead to algorithmic inter-

ventions that entrench existing social conditions, narrow the range of possible reforms, and impose algorithmic

logics at the expense of others. Characterizing these concerns—which draw heavily on STS and critical algorithm
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studies—under the banner of formalism provides a path to evaluating and pursuing potential remedies.

Second, we evaluate the dominant approaches to reducing algorithmic harms, such as efforts to promote

algorithmic fairness, ethics, and various forms of data and model documentation. Such efforts provide important

mechanisms to mitigate certain algorithmic harms. Yet these reforms involve incorporating new processes or

metrics into the formal method, and thus do not allow practitioners to transcend formalism itself. Additions of

form—most notably, algorithmic fairness—fail to provide the epistemic and methodological tools necessary to

fully identify and act upon the social implications of algorithmic work. To solve the chronic failures of algorithmic

formalism, computer scientists need new modes of reasoning about the social, both as a terrain of intervention

and as an attribute of their own work. This requires an evolution of algorithmic reasoning, expanding the bounds

of what it means to “think” algorithmically and “do” algorithmic interventions.

Third, we consider a possible path forward. An epistemic and methodological evolution is a daunting task,

and it is not obvious how such a shift could occur or that it would be productive. With this in mind, we draw

on our characterization of algorithmic formalism to explore a parallel to formalism in another field—law—and

to how legal formalism was addressed with a methodological evolution toward legal realism. From around 1860

through the beginning of the twentieth century, American legal thought was characterized by legal formalism: a

project to systematize law around scientific and deductive principles. Because this mode of thought adhered to

objective principles but did not consider those principles’ actual impacts, its application upheld highly unequal

social conditions. These impacts provoked critiques that led to a methodological evolution toward legal realism.

Legal realism did not wholly supplant formalism, but instead provided lawyers and judges with additional tools

to account for the realities of social life and of the law’s impacts. This shift—which expanded the terrain on

which law could be evaluated and debated—suggests both a path toward reforming computer science and the

utility of such a path.

Fourth, drawing on the lessons of legal realism, we propose a new mode of computer science thinking—

“algorithmic realism”—that responds to the concerns raised by STS and related disciplines. Compared to algo-
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rithmic formalism, algorithmic realism provides three alternative orientations: a reflexive political consciousness,

a porousness that recognizes the complexity and fluidity of the social world, and contextualism. As such, al-

gorithmic realism provides the epistemic and methodological tools to develop algorithmic interventions that

question unjust social conditions, expand the range of possible reforms, and account for a wide array of values

and goals.

At first glance the law may seem like an unusual place to look for inspiration regarding computer science.

With a few exceptions [252, 299], law and computer science are typically seen as in tension, or subject to op-

posing logics: technology moves “fast” while law is “slow,” technology is about “innovation” while law is about

“regulation,” and so on. Yet several parallels suggest why this comparison is apt. Algorithmic interventions op-

erate in a manner akin to legal ones, often taking the place of (or, more precisely, offering a particular technical

form of) legal reforms. Like the law, algorithms are commonly invoked as neutral mechanisms of formalized

decision-making. Yet in practice, both are subject to debates regarding the proper role for discretion, ways to

combat discrimination, and determinations of the legitimate bases for decision-making. Moreover, the recent

surge of enthusiasm for “public interest technology” explicitly follows in the footsteps of (and indeed, takes its

name from) a prior movement in legal education [437].

Of course, our goal is not to claim a neat one-to-one correspondence between computer science and law

(there certainly are substantial differences), but to point to how the lessons of law can inform computer science.

Like computer science, the law involves training in a methodological practice that structures how its practitioners

create and evaluate social interventions. Modes of legal thought influence legal interventions in much the same

way that modes of algorithmic thought influence algorithmic interventions. Legal scholars have long considered

the relationship between the intended and actual impacts of social interventions. Thus, we see the parallel to legal

formalism/realism as a way to identify a bridge between the deconstructive critique of algorithmic formalism

from STS and a new mode of computer science practice—algorithmic realism—that productively engages with

these critiques.
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Following the history of law, the distinction between algorithmic formalism and realism does not reflect a

rigid dichotomy: the evolution toward realism is an expansion of computer science to embrace realist orientations

alongside formalist ones, not a wholesale rejection of formalism. It is precisely the formalism of algorithmic meth-

ods that has enabled many of computer science’s most exciting advances [102, 279, 511]. Algorithmic realism

provides complementary approaches that make sociotechnical considerations legible and commonplace within

computer science thinking. This expanded epistemic and methodological toolkit can help computer scientists

to address existing problems more fully and to see new questions.

Nor does the distinction between algorithmic formalism and realism fully characterize the behaviors of com-

puter scientists. In practice, computer scientists are “diverse and ambivalent characters” [444] who blend formal-

ist and realist methods, engaging in “nuanced, contextualized, and reflexive practices” [359] as they “continuously

straddle the competing demands of formal abstraction and empirical contingency” [387]. Some computer sci-

ence subfields (such as CSCW [48]) have long histories of engaging with sociotechnical practices, while others

(such as FAT*) are actively developing such methods. We aim to highlight examples of realist-aligned work to

help shift such work from exception to standard practice. Nonetheless, computer scientists recognize that the

insights of STS and critical algorithm studies fall beyond their own interpretive frames [344]. Even within the

FAT* community, critical evaluations of the mathematization of fairness suggest the need for further evolution

from formalism towards realism [34, 193, 200, 230, 446].

Of course, a turn toward algorithmic realism would not remedy or prevent every algorithmic harm. Computer

scientists are just one set of actors within larger sociotechnical systems that include other people, institutions,

policies, and pressures. Algorithmic realism may do little directly to remedy the harms of algorithms deployed

through discriminatory public policies, by authoritarian regimes, or under exploitative business models. A great

deal of algorithmic work is also done by people without formal computer science training. Algorithmic thinking

presents a potent site for reform, however. Computer science plays an influential role in society, both directly

through the work of developing algorithmic interventions and indirectly as algorithmic thinking shapes how
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scholars (both inside and outside the field), practitioners, and public officials conceive of social challenges and

progress [50, 194, 426, 511]. For instance, various public policies and business practices draw on algorithmic

reasoning as a way to gain legitimacy [194, 375, 529].

Following STS scholars such as Jasanoff [251] and Winner [512], we aim to trace a middle path between tech-

nological determinism and social determinism, exploring the ways in which algorithmic artifacts have politics.

We see algorithmic realism not as distinct from sociotechnical systems, but valuable precisely because it situ-

ates algorithmic interventions within sociotechnical systems. Computer scientists are not the only or the most

important actors within sociotechnical systems (nor should they be). Yet reforming such systems requires that

computer scientists recognize their positionality and reason about what roles they do (and should) have. Thus,

providing computer scientists with the epistemic capacity to navigate the inherent socio-political dimensions of

their work is an essential component of sociotechnical reform.

9.2 Algorithmic Formalism

Formalism implies an adherence to prescribed form and rules. The chosen form (e.g., text or numbers) is

analyzed according to particular rules, often with the explicit purpose of “constrict[ing] the choice of [a] deci-

sionmaker” or analyst [435]. In literature, for example, formalism involves “the view that the formal properties

of a text—its form, structure, grammar, and so forth—define its boundaries” such that “the text stands on its

own as a complete entity” [69]. Similarly, formalism in mathematics involves the idea that “mathematics is not a

body of propositions representing an abstract sector of reality but is much more akin to a game” where meaning

derives from manipulating symbols according to the rules [505].

Formalism is not itself intrinsically bad. It is a method, one that has many virtues. Conceptually, formalizing

a problem can lead to analytical clarity. Practically, formalizing a problem can make complex problems tractable.

No system that decides how to distribute water, govern educational resources, or predict weather can do so
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without in some way formalizing the problem at hand.

Yet formalism also has significant limitations. The danger is not in formal methods per se, but in the failure

to recognize the limits of formal insights and in the uncritical deployment of formal methods in complex social

contexts where their assumptions may be invalid. Because formal knowledge “requires a narrowing of vision,”

writes James Scott, “the formal order encoded in social-engineering designs inevitably leaves out elements that are

essential to their actual functioning” [441]. This narrowing—who or what is left on the epistemic cutting room

floor and systemically excluded, or made the focus of overly-simplified analytical scrutiny—involves political

decisions about what is and is not important. Formal orders “are often sites of political and social struggles”

with “brutal consequences” for those being classified [49].

Formalism is at the core of algorithms. As one canonical algorithms textbook describes, an algorithm is a

“well-defined computational procedure” for solving “a well-specified computational problem” [102]. The essen-

tial attribute of this reasoning is formalism through abstraction: algorithms require the explicit mathematical

articulation of inputs, outputs, and goals. This process of employing abstraction to “formulat[e] a problem to

admit a computational solution” is deemed the hallmark of “computational thinking” [511]. As another introduc-

tory algorithms textbook explains, “At their most effective, […] algorithmic ideas do not just provide solutions

to well-posed problems; they form the language that lets you cleanly express the underlying questions” [279].

Done well, “a clean algorithmic definition can formalize a notion that initially seems too fuzzy and nonintuitive

to work with mathematically” [279].

Formalism has been a consistent subject of critique in computing. Brian Smith argued that computer scientists

should be attentive to the gulf between the abstractions of models and the complexity of the world [454]. Philip

Leith called for computer science to replace computing formalism with a “sociological imagination” [297]. Philip

Agre decried “the false precision of formalism” as “an extremely constricting” cognitive style [6]. Pat Langley

noted that machine learning research has seen an “increased emphasis on mathematical formalization and a bias

against papers that do not include such treatments” [288]. More recently, scholars have highlighted the limits of
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abstraction and formalism with regard to algorithmic fairness, articulating the need for a sociotechnical frame

[446].

9.2.1 Objective and Neutral

The algorithmic formalist emphasis on objectivity and neutrality occurs on two related levels. First, algorithms

are perceived as neutral tools and are often argued for on the grounds that they are capable of making “objective”

and “neutral” decisions [194, 257, 395, 245]. Second, computer scientists are seen by themselves and others as

neutral actors following the scientific principles of algorithm design from positions of objectivity [191, 240]. Such

an ethos has long been prevalent among scientists, for whom objectivity—“the suppression of some aspect of

the self, the countering of subjectivity”—has become a widespread set of ethical and normative practices [116].

The orientation of objectivity and neutrality prevents computer scientists from grounding algorithmic inter-

ventions in explicit definitions of desirable social outcomes. Social and political1 concerns are granted little

space within algorithmic thinking, leaving data science projects to emerge through the negotiation of technical

considerations such as data availability and model accuracy, with “explicit normative considerations [rarely] in

mind” [386]. Even efforts that are motivated as contributions to “social good” typically lack a clear explanation

of what such “good” entails, instead relying on vague and undefined notions [191]. Computer scientists engaged

in algorithmic interventions have argued, “I’m just an engineer” [240] and “Our job isn’t to take political stances”

[191].

This emphasis on objectivity and neutrality leads to algorithmic interventions that reproduce existing social

conditions and policies. For objectivity and neutrality do not mean value-free—they instead mean acquiescence

to dominant scientific, social, and political values. Scientific standards of objectivity account for certain kinds

of individual subjectivity, but “methods for maximizing objectivism have no way of detecting values, interests,

1We invoke politics not in the sense of ideologies, political parties, or elections, but (in a manner akin to Winner [512])
to reference broader debates about “the good”—i.e., the set of processes and dynamics that shape social outcomes and
that distribute power among people and groups.
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discursive resources, and ways of organizing the production of knowledge” [214]. As such, the supposedly ob-

jective scientific “gaze from nowhere” is nothing more than “an illusion” [212]. Neutrality similarly represents

an “illusory and ultimately idolatrous goal” that often serves to freeze existing conditions in place [486]. Concep-

tions of algorithms and computer scientists as objective and neutral launder the perspectives of dominant social

groups into perspectivelessness, reinforcing their status as the only ones entitled to legitimate claims of neutrality

[? ? 212, 214]. Anything that challenges existing social structures is therefore seen as political, yet reform efforts

are no more political than efforts to resist reform or even the choice simply to not act, both of which preserve

existing structures.

Predictive policing systems offer a particularly pointed example of how striving to remain neutral entrenches

and legitimizes existing political conditions. These algorithms exist on the backdrop of a criminal justice system

that is increasingly recognized as defined by racial injustice. Definitions of crime are the products of racist

and classist histories that associated Black men with criminality [10, 29, 63, 462]. Moreover, predictive policing

is based on the discredited model of “broken windows” policing that has been found to be ineffective and

racially discriminatory [63]. In this context, algorithms that uphold common definitions of crime and how to

address it are not (indeed, cannot be) removed from politics—they merely seem removed from politics. Computer

scientists are not responsible for this context, but they are responsible for choosing how they interact with it.

When intervening in social contexts steeped in contested histories and politics, in other words, it is impossible

for computer scientists to not take political stances.

The point is not to argue for a single “correct” conception of the good to which all computer scientists must

adhere. It is precisely because a multiplicity of perspectives exists that judgments regarding scientific practices

and normative commitments must be explicitly incorporated into algorithm development and evaluation. Yet

the epistemic commitments of neutrality and objectivity exclude such considerations from algorithmic reasoning,

allowing these judgments to pass without deliberation or scrutiny.
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9.2.2 Internalist

Another attribute of algorithmic formalism is internalism: only considerations that are legible within the language

of algorithms—e.g., efficiency and accuracy—are recognized as important design and evaluation considerations.

The analysis of an algorithm primarily emphasizes its run time (or efficiency), characterizing its behaviors in

terms of upper, lower, and tight bounds—all features that can be mathematically defined based on the algorithm’s

operations [102, 279]. Machine learning algorithms are additionally centered on a corpus of data from which

to derive patterns and are evaluated according to accuracy metrics such as area under the curve (AUC). From

predictive policing [345] to healthcare [153] to fake news [523], claims regarding an algorithm’s effectiveness and

quality emphasize accuracy along these metrics. This approach of defining and measuring algorithms by their

mathematical characteristics provides little internal capacity to reason about the social considerations (such as

laws, policies, and social norms) that are intertwined with these algorithms’ performance and impacts.

The internalist emphasis on the mathematical features of algorithms leads to algorithmic interventions based

in a technologically determinist theory of social change. Because significant aspects of the social and political

world are illegible within algorithmic reasoning, these features are held as fixed constants “outside” of the algo-

rithmic system. In turn, algorithms are proposed as a sole mechanism of social change, with the existing social

and political conditions treated as static. For instance, several papers analyzing recidivism prediction tools ex-

plicitly describe crime rates in this manner. One describes recidivism prevalence as a “constraint—one that we

have no direct control over” [82], while another explains, “the algorithm cannot alter the risk scores themselves”

[101]. In an immediate sense it is reasonable to see existing recidivism rates as the backdrop against which a risk

assessment makes predictions; yet the recurring practice in computer science of treating these social conditions

as a fixed “constraint” exemplifies the internalist assumption that algorithms operate atop a static world.

Internalist reasoning leads to algorithmic interventions that optimize social systems according to existing poli-

cies and assumptions, drastically narrowing the range of possible reforms. Algorithmic interventions conceived
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through the internalist orientation have a tendency “to optimize the status quo rather than challenge it” [71].

The goal becomes to predict (static) distributions of social outcomes in order to make more informed decisions

rather than to shift (fluid) distributions in order to enable better outcomes. In this vein, an argument made for

risk assessments is that “[a]lgorithms permit unprecedented clarity” because they “let us precisely quantify tradeoffs

among society’s different goals” (e.g., fairness and low crime rates); algorithms thereby “force us to make more

explicit judgments about underlying principles” [277]. Yet this calculus can be seen to provide “clarity” only if

the contingency and contestability of social conditions are beyond consideration. Note the tradeoffs that fall

beyond the purview of risk assessments and are therefore rendered irrelevant: for instance, the tradeoff between

pretrial detention and due process or the tradeoff between implementing risk assessments and abolishing pretrial

detention.

Moreover, because this internalist orientation emphasizes an algorithm’s mathematical properties, algorithmic

interventions are unable to account for the particular ways that people, institutions, and society will actually in-

teract with algorithms. This is one reason why the deployment of algorithms can generate unintended social

outcomes. Algorithmic interventions are thus indeterminate: the deployment of an algorithm provides little guar-

antee that the social impacts expected according to internalist evaluations will be realized. A paradigmatic case

involves traffic optimization algorithms, which are modeled on the assumption that increasing road capacity will

reduce traffic [368]. Such algorithms have informed urban planning interventions over the past century, from

efforts in the 1920s to manage the influx of automobiles [368] to today’s visions for self-driving cars [475]. Yet

because they rarely account for the second-order effects of their own introduction, these algorithms drastically

overestimate the benefits of increasing roadway capacity: in response to more efficient automobile travel, mo-

torists change their behavior to take advantage of the new road capacity, ultimately leading to more driving and

congestion [140, 143].

It is impossible for an algorithm to account for every aspect of society or every way that people might respond

to it. Every method needs to set boundaries. Yet the choice of where to set those boundaries shapes what factors

191



are considered or ignored, and in turn shapes the impacts of interventions developed through that method [441].

Internalism enforces a strict frame of analysis, preventing algorithmic interventions from adapting to social

considerations that are material to success. Computer scientists therefore need to reason more thoroughly about

when certain factors can be ignored and when they must be grappled with.

9.2.3 Universalism

Algorithmic formalism emphasizes an orientation of universalism: a sense that algorithms can be applied to all

situations and problems. Popular algorithms textbooks extol the “ubiquitous” applications of algorithms [102]

and the “pervasive” reach of algorithmic ideas [279]. An influential computer scientist hails “computational

thinking” as “the new literacy of the 21st century,” excitedly describing how this mode of thinking “has already

influenced the research agenda of all science and engineering disciplines” and can readily be applied in daily

life [511]. While some have recognized that there are contexts in which it is better not to design technology

[31], the common practice among computer scientists is to focus on how to design algorithms rather than whether

algorithms are actually appropriate in any given context. In fact, when students in data science ethics classes

have questioned whether algorithms should be used to address social challenges, they are told that the question

is out of scope (J. Geffert, personal communication, April 4, 2019) [516].

This universalist orientation leads to interventions developed under an assumption that algorithms can provide

a solution in every situation—an attitude that has been described in recent years as “technological solutionism”

[349], “tech goggles” [194], and “technochauvinism” [56]. Algorithmic interventions have been proposed as a

solution for problems ranging from police discrimination [161, 194] to misinformation [523, 529] to depression

detection [68, 119]. Numerous initiatives strive to develop data science and artificial intelligence for “social

good” across a wide range of domains, typically taking for granted with scant justification that algorithms are an

effective tool for addressing social problems [191].

Algorithmic interventions pursued under universalism impose a narrow algorithmic frame that structures how
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problems are conceived and limits the range of “solutions” deemed viable. Given that “[t]he way in which [a]

problem is conceived decides what specific suggestions are entertained and which are dismissed” [128], apply-

ing algorithmic thinking to social problems imposes algorithmic logics—namely, accuracy and efficiency—onto

these domains at the expense of other values. In “smart cities,” for instance, algorithms are being deployed to

make many aspects of municipal governance more efficient [194]. Yet efficiency is just one of many values that

city governments must promote, and in fact is often in tension with those other values. Inefficient behaviors

(such as staff making small talk with residents) can improve a municipality’s ability to provide fair social services

and garner public trust [522]. More broadly, an emphasis on efficiency in urban life can erode vital civic actions

such as deliberation, dissent, and community building [187].

Algorithms can, of course, model a variety of contexts. Efficiency and accuracy are often important factors.

But they are typically not the only nor the most important factors. Algorithmic interventions require reasoning

about what values to prioritize and what benefits algorithms can provide. However, the universalist orienta-

tion prevents computer scientists from recognizing the limits of algorithms and thoroughly evaluating whether

algorithms are appropriate.

This uncritical deployment of algorithmic interventions in turn elevates the status of the algorithmic reasoning

behind such interventions. Algorithmic formalism has in many ways become the hallmark of what it means to

conceive of any problem rigorously, regardless of themany examples of how such thinking faces serious epistemic

defects in various social settings. As such, a significant risk of algorithmic formalism is that it contributes to

formal methods dominating and crowding out other forms of knowledge and inquiry (particularly local forms

of situated knowledge) that may be better equipped to the tasks at hand.

193



9.3 Formalist Incorporation

One approach to addressing the failures of algorithmic formalism is to incorporate new processes, variables,

or metrics into its logic. This process, which we call “formalist incorporation,” is particularly appealing to

practitioners operating within algorithmic formalism, who tend to respond to critiques of formalizations with

calls for alternative formalizations [6]. For example, one paper that describes an algorithmic intervention whose

implementation was blocked by community resistance notes, “the legitimate concerns raised by these families

can be modeled as objectives within our general formulation and integrated within our framework” [38].

We see many of the recent efforts in the algorithm research and policy communities as examples of formalist

incorporation. Specific interventions of this sort include the methods of algorithmic fairness and approaches

to improve data and model documentation [177, 233, 343]. Such reforms have significant value and can im-

prove many aspects of algorithms, but they are not designed to provide an alternative mode of reasoning about

algorithms. Similarly, although the burgeoning frame of ethics has potential to expand algorithmic reasoning,

efforts to promote ethics within computer science and the tech industry have tended to follow a narrow logic

of technological determinism and technological solutionism [162, 202, 337, 516]. Because these reforms operate

within the logic of algorithmic formalism, they are ultimately insufficient as remedies: formalist incorporation

cannot address the failures of formalism itself. When computer scientists raise concerns and engage with social

science in this manner, “broader epistemological, ontological, and political questions about data science tools

are often sidelined” [344].

We focus here on the methods and research regarding algorithmic fairness, which represents (arguably) the

most significant recent change to algorithmic research and practice in response to algorithmic harms. As cur-

rently conceived, algorithmic fairness is ill-equipped to address these concerns because it is itself a manifestation

of algorithmic formalism via formalist incorporation.

First, algorithmic fairness is grounded in objectivity and neutrality. Fairness is treated as an objective concept,
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one that can be articulated and pursued without explicit normative commitments [200]. Approaches to algorith-

mic fairness often position their goals “in painfully neutral terms” such as “non-discrimination” [230]. Much of

the work on fairness points to “bad actors,” [230], reinforcing the view that algorithms themselves are neutral.

In turn, emphasizing an algorithm’s fairness often obscures deeper issues such as unjust practices and policies

[194]. What may appear “fair” within a narrow computational scope can reinforce historical discrimination (see

Chapter 8).

Second, fairness relies on a narrow, internalist approach: “the mandate within the fair-ML community has

been to mathematically define aspects of the fundamentally vague notions of fairness in society in order to incor-

porate fairness ideals into machine learning” [446]. For example, one paper explicitly “reformulate[s] algorithmic

fairness as constrained optimization” [101]. The deployment of an algorithm mathematically deemed “fair” is

assumed to increase the fairness of the system in which the algorithm is embedded. For example, predictive

policing algorithms and risk assessments have been hailed as remedying the injustices of the criminal justice sys-

tem [495, 161, 194, 393, 419], with significant energy spent ensuring that these algorithms satisfy mathematical

fairness standards. Yet such assessments typically overlook the ways in which these “fair” algorithms can lead to

unfair social impacts, whether through biased uses by practitioners (see Chapters 3 and 4), distorting deliberative

processes (see Chapter 5), entrenching unjust policies (see Chapter 8), or shifting control of governance toward

unaccountable private actors [53, 256, 508].

Third, fairness embodies an attitude of universalism. Attempts to define and operationalize fairness treat

the concept universally, with little attention to the normative meaning behind these definitions or to the social

and political context of analysis [200, 446]. Much of the algorithmic fairness literature prioritizes portability of

definitions and methods across contexts [446]; evaluation tools are designed to fit into any machine learning

pipeline [427]. In turn, fairness is applied as the solution wherever algorithmic biases (or other harms) are

exposed. For instance, when research exposed that face and gender recognition systems are more accurate on

light-skinned men than on dark-skinned women [60], the primary response was to strive for less biased systems
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[283, 336, 411, 510, 528], in one case by targeting homeless people of color for facial images [375]. Yet such a

pursuit of fair facial recognition does not prevent the systemic harms of this technology—instead, making facial

recognition “fair” may legitimize its use under the guise of technical validation [218].

Because of its formalist underpinnings, fair machine learning fails to provide the tools for computer scien-

tists to engage with the critical normative and political considerations at stake when developing and deploying

algorithms. Addressing the ways in which algorithms reproduce injustice requires pursuing a new mode of algo-

rithmic thinking that is attentive to the social concerns that fall beyond the bounds of algorithmic formalism.

9.4 Methodological Reform: From Formalism to Realism in the

Law

To understand the nature and impacts of an intervention to remedy the limits of formalist reasoning, we turn to

the evolution in American legal thought from legal formalism to legal realism.

9.4.1 Legal Formalism

The period from about 1860 through the First World War was one of consensus in American legal thought. The

dominant method, called “legal formalism,” was the product of concerted effort by legal scholars and judges to

promote formal methods in law [268].2 Legal formalism provided a both a descriptive and a normative account,

positing how judicial reasoning does and should occur.

American legal thought in this period was “formal” in several senses. Most fundamentally, law was seen “as

a science [that] consists of certain principles or doctrines” [439]. Legal thought aimed to identify, classify, and

arrange the principles embodied in legal cases as part of a unified system. Jurists working in this mode tended

2The term “legal formalism” was not used by its adherents but was first introduced by legal realists to describe the
dominant mode of reasoning they sought to displace. Contemporary legal scholars typically refer to this mode of reasoning
(and the period in which it was dominant) as Classical Legal Thought.
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to see legal authority as separated along “sharp analytical boundaries—between public and private, between law,

politics and morality, and between state and civil society” [269]. Each entity exercised absolute power within its

sphere of authority but was not supposed to consider what lay beyond its internalist bounds. Legal formalists

favored the application of law along a series of “bright-line” rules; these rigid rules were believed to create a more

objective and scientific application of law because they prevented exceptions or context-specific claims. Finally,

legal formalism aspired to determinism. It was assumed that a small number of universal principles, derived from

natural rights, could be applied to reliably deduce the correct application of law in specific instances [269, 268].

The height of legal formalism coincided with the period of laissez-faire policies and provided reasoning well-

suited to defend these policies from progressive challenge. Legal formalism emphasized the autonomy of private

citizens and the divide between the authority of the state and that of private actors. From these general principles,

judges deduced that efforts to regulate the economy were unconstitutional [490]. In the seminal 1905 caseLochner

v. New York, the U.S. Supreme Court concluded that a law limiting the working hours of employees represented

“unreasonable, unnecessary and arbitrary interference with the right and liberty of the individual to contract”

[490]. In his dissent, Justice Oliver Wendell Holmes argued that the Court failed to consider the context of the

case, noting, “General propositions do not decide concrete cases” [490]. Legal scholar Roscoe Pound argued

that Lochner reflected an ignorance of actual working conditions in the United States, which he attributed in part

to the “blinders imposed on judges by the ‘mechanical’ style of judicial reasoning” [398]. Following Lochner, it

became clear among reform-minded legal scholars that enabling the law to account for the realities of social

life necessitated, as a first step, methodological critiques of the formal reasoning that judges used to uphold the

status quo.

9.4.2 Legal Realism

The consensus around legal formalism was upended by an alternative mode of thought: “legal realism.” Moti-

vated by what they saw as the failure of legal reasoning to account for its real-world impacts, the legal realists

197



challenged the formalist “jurisprudence of forms, concepts and rules” [269]. They believed that the inability of

supposedly well-reasoned legal analysis to address social challenges such as poor working conditions and stag-

gering inequality stemmed from the fact that context-specific realities and the social impact of laws had no place

in formal legal analysis.

Achieving social reform therefore required a methodological intervention: a shift in the everyday reasoning

of lawyers and judges in order to render social concerns legible in legal thought. Holmes wrote that the “main

purpose” of legal realist interventions “is to emphasize certain oft-neglected matters that may aid in the under-

standing and in the solution of practical, every-day problems of the law” [231]. This pragmatic approach to

reform was deeply rooted in the commitment of the legal realists to create a “realistic jurisprudence” focused

not on the “paper rules” of black letter doctrine, but the “real rules” that actually described the behavior of

courts [306]. Realists aimed to enable the law (and themselves as practitioners of the law) to deal “with things,

with people, with tangibles […]—not with words alone” [307]. Rather than simply point out the failures of legal

formalism, realist critiques put forward newmodes of practical reasoning that overcame the epistemic limitations

of formalism and that expanded the commonsense modes of “thinking like a lawyer.”

From Universal Principles to Contextual Grounding

A primary legal realist insight was that legal outcomes were not—and could not be—the result of a scientific

process. Wesley Hohfeld argued that formal legal thought engaged in deductive error by treating legal principles

as universal: “the tendency—and the fallacy—has been to treat the specific problem as if it were far less complex

than it really is; and this […] has […] furnished a serious obstacle to the clear understanding, the orderly statement,

and the correct solution of legal problems” [231].

The issue arose because efforts to deduce rights and duties from universal principles of liberty or autonomy

overlooked how the law was indeterminate (e.g., it could protect “liberty” in multiple competing yet equally

plausible ways), confronting decision makers with “a choice which could not be solved by deduction” [269]. In
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conventional examples of legal reasoning, legal realists identified instances of “legal pluralism”—the capacity for

legal materials (e.g., prior cases, statutes, rules and principles) to render multiple legitimate outcomes due to gaps,

conflicts, ambiguities, and circularities within those materials. The resulting indeterminacy and pluralism forced

legal actors to make judgments, based on their interpretations and values rather than mechanical procedures, that

would structure social dynamics—in effect, making policy.

Realists argued that this adherence to deduction from general principles played a key role in law’s complicity

with the social harms of the day. Formal legal analysis was evaluated based on whether it correctly identified and

applied legal principles. This privileged the formally correct application of principles over the (often unequal)

results that such applications created. Realists decried this adherence to “an academic theory of equality in the

face of practical conditions of inequality” as methodologically absurd as well as socially harmful [398]. Instead,

realists asserted, legal decisions should be evaluated based on their actual impact in their particular context: law

should be understood as a means to achieving social ends, not as an end in itself [307]. Unlike philosophy, argued

Holmes, the law was not a project of the ideal, but an instrumental means of administering justice in the messy

and complex world [234].

From Objective Decisions to Political Assessments

Because cases could not be solved by applying general principles, realists argued that it is impossible to engage

in legal decision-making without exercising some degree of subjective judgment. The act of filling gaps in legal

reasoning with policymaking was thus infused with politics—the ideological predilections and commitments of

the judge. The upshot for realists was not that such expressions of politics are inappropriate, but that they are

inevitable.

Realist insights enabled legal practitioners to grapple with the policymaking nature of their work. For example,

in cases regarding workers’ rights following Lochner, judges could no longer reason that judicial interference

would be impermissible, because judicial restraint was as much of a political choice as judicial intervention [208].
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More broadly, realists displaced the dominance of bright-line rules3 with a shift towards standards meant to

structure reasoning regarding law’s social context and impacts.4 Moving from rules to standards—rendering

gaps in deductive legal reasoning more explicit and legible—was one way that the law evolved its methods to

incorporate social context and impact into legal doctrines.

From Internalist Boundaries to Porous Analysis

The effort to evaluate the law vis-à-vis its social impact opened up legal analysis to the languages and methods of

other disciplines. Legal realists were enthusiastic about filling normative legal gaps with pragmatist philosophy,

political science, statistics, sociology, and economics, and decried the failure of law to keep up with developments

in “social, economic and philosophical thinking” [399]. They developed limits to legal reasoning within legal

authority, carving out spaces where law should defer to these disciplines rather than to a judge.

This emphasis on social impact affected legal analysis in two important ways. First, it opened up terrain for

the positive program of incorporating “considerations of social advantage” [234] into legal decision-making—to

resolve ambiguities in legal materials by looking to social realities. Robert Hale’s analysis of industrial workplace

conditions typifies this approach [208]. Hale argued that judicial decisions relying on broad commitments to free-

dom (and opposition to government coercion) to protect “freedom of contract” from workplace unionization

flew in the face of Industrial Era workplace conditions, where workers faced extreme coercive pressure from

private employers. Hale showed how legal decisions necessarily distribute freedom and coercion among parties,

thus necessitating that decisions be made in reference to a broader social objective.

Second, the focus on impact shifted legal thinking toward considering how opinions and laws would play

out in practice. Holmes argued that legal inquiry should concern itself with the messy administration of justice

among real-world actors. Legal scholars and judges should therefore think of law as would “a bad man” who

3E.g., “If you are on the property of another without consent, they are not liable for any injury you may suffer under
trespass.”

4E.g., “Under certain conditions, it may be socially desirable for us to enforce liability even under conditions of trespass:
for example, if the harm came to a child lured onto the property by an attractive nuisance.”
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is not motivated by “the vaguer sanctions of conscience” but only the “material consequences” that may befall

him if he runs afoul of the law [234]. To assess whether a law is good or bad, in other words, legal thinkers ought

to anticipate the behavior of actors looking to take advantage of the law.

The Realist Evolution of Legal Common Sense

Realist critiques and proposals were controversial and spurred intense debate [269, 307]. Moreover, realist in-

terventions did not provide a silver bullet to the intractable challenge of administering justice through law. Nor

did legal realism fully supplant legal formalism: many formalist orientations remain common in American legal

thought (and have in recent decades regained prominence in many areas).

Nonetheless, legal realism provided the methodological basis for profound legal reform. Realist methods

enabled progressive changes in private law, provided the intellectual foundations for the administrative state, and

led to the overturn of Lochner v. New York and the subsequent creation of American labor law [268]. Perhaps

legal realism’s most significant contribution was expanding the epistemic and methodological terrain on which

legal reasoning and legal debate could occur. By the 1950s, law students became adept at reasoning about the

limitations of law and at making arguments about the policy effects of legal decisions. American legal pedagogy

“deeply absorbed the basic idea that the validity of laws should be measured, in part, in terms of their social and

economic effects” [342]. Realist methods remain highly influential and have provided the intellectual foundation

for several subsequent and ongoing efforts to expand legal thinking, including critical legal studies [267], critical

race theory [109], law and economics [396], and law and political economy [204].

9.5 Algorithmic Realism

Recognizing the dangers of algorithmic formalism and the lessons of legal realism, we turn now to articulating the

principles of algorithmic realism. These aspirational attributes counter the orientations of algorithmic formalism,

with particular attention to preventing (or at least mitigating) the harms it can produce. As the case of legal
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thought demonstrates, such a shift can productively enhance a discipline’s epistemic and methodological ability

to engage with the social. While no mode of reasoning can avoid imposing its logic on the world, self-conscious

modes can expand their internal logic to explicitly reason about their effects on the world.

9.5.1 Political

Rather than strive for unattainable notions of objectivity and neutrality, algorithmic realism emphasizes that

algorithmic interventions are inherently political. This does not entail computer science entirely abandoning

objectivity and its practices, such as the norm against manipulating data in order to generate desired results.

Instead, it means interrogating the types of subjectivity that typically fly under the radar of “objective” practice:

choices such as formulating research questions, selecting methodologies and evaluation metrics, and interpreting

results.

This political orientation enables computer scientists to reflect on the normative commitments and outcomes

of algorithmic interventions. Rather than creating paralysis, with computer scientists unsure how to be neutral

and objective when doing so is impossible, algorithmic realism provides a language to reason about political

commitments and impacts as part of what it means to “do” algorithms. First, freed from the strict imperative

to be neutral and objective, computer scientists can interrogate the ways in which their assumptions and values

influence algorithm design. This reflexive turn can help computer scientists—regardless of their particular nor-

mative commitments—better reason about the relationship between their design choices, their professional role,

and their vision of the good. Such reflection should occur through open discussion and deliberation, forming a

central component of the research process. Second, algorithmic realism shifts the primary focus of algorithmic

interventions from the quality of an algorithmic system (in an internalist sense) to the social outcomes that the

intervention produces in practice. No matter how technically advanced or impressive a system is, its success

under an algorithmic realist frame is defined by whether that system actually leads to the desired social changes.

This approach enables interventions that question rather than uphold unjust social conditions and policies.
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Several approaches can inform such development of algorithms. The schema of “reformist” and “non-reformist”

reforms, articulated by social philosopher André Gorz, provides a way to evaluate interventions based on their

political implications [189]. While a reformist reform “subordinates its objectives to the criteria of rationality and

practicability of a given system and policy,” a non-reformist reform “is conceived not in terms of what is possible

within the framework of a given system and administration, but in view of what should be made possible in terms

of human needs and demands.” Designers Anthony Dunne and Fiona Raby classify design into two categories:

affirmative design, which “reinforces how things are now,” and critical design, which “rejects how things are

now as being the only possibility” [142]. A related framework is “anti-oppressive design,” which orients “the

choice of a research topic, the focus of a new social enterprise, or the selection of clients and projects” around

challenging oppression [457]. Similarly, the Design Justice Network provides ten design principles that include

“prioritize design’s impact on the community over the intentions of the designer” [360].

These frameworks show that recognizing algorithmic interventions as political does not prevent computer

scientists from doing computer science—instead, doing so can help them incorporate normative reflection into

the methods and questions that drive their work. With this in mind, computer scientists can ask a variety of

questions to inform their practice: Would the implementation of this algorithm represent a reformist or non-

reformist reform? Is the design of this algorithm affirmative or critical? Would providing our project partner

with this algorithm entrench or challenge oppression? Is the project prioritizing outcomes over my intentions?

Will this algorithm empower the communities it affects?

An example of the expanded practical reasoning that a political orientation provides involves burgeoning

activism among employees of technology companies against developing algorithmic interventions for use by

the United States Departments of Defense and Homeland Security [179]. Rather than perceiving themselves as

“just an engineer” [240], these computer scientists recognize their position within larger sociotechnical systems,

perceive the connection between developing an algorithmic intervention and the political and social outcomes

of those interventions, and hold themselves (and their companies) accountable to the impacts of the algorithms
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they develop. Building on this movement, in 2019, thousands of computer science students from more than a

dozen U.S. universities pledged that they would not work for Palantir due to its partnerships with Immigration

and Customs Enforcement (ICE) [338].

9.5.2 Porous

Recognizing algorithmic formalism’s limited ability to characterize sociotechnical systems, algorithmic realism is

porous, expanding the range of considerations deemed relevant to algorithm design and evaluation. Factors that

were previously beyond the internalist algorithmic frame become central to what it means to have knowledge

or make claims about algorithms. A porous approach to algorithms means that formalist considerations (e.g.,

accuracy, efficiency, and fairness) are recognized as necessary but no longer sufficient to define the efficacy or quality

of an algorithm—additional modes of analysis are essential. As in law, realism entails both an appreciation of

the insights of other fields and a willingness, where appropriate, to carve out spaces of deference to those fields.

This porous orientation allows for algorithmic interventions that eschew technological determinism and in-

stead recognize the contingency and fluidity of the social world. It makes legible the potential for social and

policy change in addition to (or instead of) technological change. This does not mean adopting a mantra of so-

cial determinism, believing that social systems will evolve irrespective of technology. Instead, a porous approach

to algorithmic interventions follows an STS understanding of how “the realities of human experience emerge as

the joint achievements of scientific, technical and social enterprise” [251].

This porous orientation gives computer scientists the capacity to widen rather than narrow the range of

possible reforms. Rather than optimizing existing systems under the assumption of a static society, computer

scientists can develop interventions under the recognition of a fluid society. Several projects exemplify this

approach. For example, instead of developing predictive policing or risk assessment algorithms that treat risk

levels and policy responses as static, computer scientists have developed algorithms to reduce the risk of crime

and violence through targeted and non-punitive social services (see Chapter 7). In other contexts, computer
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scientists have subordinated their priorities to broader communities, helping to empower groups advocating for

change [20, 104, 129, 265, 335, 324, 436].

Furthermore, by bringing the social world into the algorithmic frame, a porous orientation allows for algorith-

mic interventions that recognize and account for indeterminacy. Under algorithmic realism, “good” algorithm

design means not simply designing to promote desired outcomes, but defining what outcomes are desirable and

undesirable, understanding how potential harms could arise, and developing anticipatory mechanisms to prevent

or mitigate those outcomes. By incorporating these considerations as essential to algorithm design, algorithmic

realism casts practices such as failing to consider how users interact with an algorithm as no less negligent than

failing to test a model’s accuracy.

Although it is impossible to fully account for indeterminacy or to guarantee that an intervention will have

particular impacts, scholarship from STS and critical algorithm studies provides valuable starting points for

analyzing the relationship between algorithmic interventions and social impacts. The Social Construction of

Technology (SCOT), for example, argues that new technologies contain numerous potential interpretations and

purposes; how a technology stabilizes (in “closure”) depends on the social groups involved in defining that

technology and the relative resources each has to promote its particular vision [392]. Co-production more richly

articulates the intertwined nature of technology and social conditions, noting identities, institutions, discourses,

and representations as particularly salient pathways of social and technological change [251]. A great deal of

other recent work has documented the particular ways in which the design, application, and use of algorithms

can exacerbate marginalization and inequality [56, 154, 194, 216, 365, 372].

Taking these approaches as a guide, numerous questions can inform computer scientists’ understanding of

how an algorithm will interact with and impact communities in a given context. These include: Who are the

relevant social actors? What are their interests and relative amounts of power? Which people need to approve

this algorithm? What are their goals? On whose use of the algorithmic system does success depend? What are

their interests and capabilities? How might this algorithm affect existing scientific, social, and political discourses
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or introduce new discourses?

This approach has particular value in anticipating and preventing harmful social impacts of algorithms. Just

as Holmes urged legal scholars and judges to evaluate laws in light of how they will be carried out in practice, so

too should computer scientists evaluate algorithmic interventions through the lens of how people may actually

apply them. For example, recognizing how police use of algorithms can distort interventions toward surveillance

and punishment, some researchers developing algorithms to identify people at risk of involvement in crime or

violence explicitly articulate their commitment to partnering with community groups and social service providers

rather than with law enforcement [30, 171].

9.5.3 Contextual

In contrast to the universalism of algorithmic formalism, algorithmic realism is grounded in contextualism, em-

phasizing the need to understand social contexts in order to determine the validity of any algorithmic intervention.

Rather than question how a situation can be modeled and acted upon algorithmically, a contextual approach ques-

tions to what extent a situation can be modeled and should be acted upon algorithmically. Context is defined here

not in a positivist sense of data that can be incorporated into algorithms, but in a broader sense entailing the

social relations, activities, and histories that shape any particular setting [138]. Gleaning context therefore re-

quires a porous approach rather than an internalist focus on data [50, 138, 443, 171]. Such context is essential to

understanding relationships and behaviors in sociotechnical systems [323, 363].

A contextual orientation allows computer scientists to avoid solutionism and instead take an agnostic approach

to algorithmic interventions. Agnosticism entails approaching algorithms instrumentally, recognizing them as just

one type of intervention, one that cannot provide the solution to every problem. In other words, an agnostic

approach prioritizes the social impacts of reform, regardless of the role played by algorithms—it is agnostic as

to the means, but not the ends. This approach can help not just to avoid harmful algorithms, but also to place

algorithms alongside institutional and policy reforms in order to robustly promote well-articulated social ends.
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For even in contexts where algorithms can help to address social challenges, they cannot do so in isolation: the

most impactful algorithmic interventions occur when algorithms are deployed in conjunction with policy and

governance reforms [194].

This approach also allows algorithmic thinking to be incorporated into social and policy reform efforts with-

out requiring the deployment of an algorithm and the imposition of algorithmic logics. Contextualism makes

legible questions about whether algorithms can capture the essential aspects of a real-world context and whether

algorithms can generate the desired social impacts. Computer scientists pursuing interventions through a con-

textual approach can pose numerous questions: What elements of this context does an algorithmic approach

capture and overlook? What values are important for any solution? To what extent can an algorithm account for

those values? How does an algorithm compare to other reforms in terms of producing better outcomes? If the

answers to these questions suggest a significant divide between the context and an algorithm’s ability to model

and improve that context, then it is likely that an algorithmic intervention is an ill-advised approach to providing

the desired social benefits.

To see this in practice, consider the experience of the author while working as a data scientist with a municipal

Emergency Medical Services (EMS) department. The author was asked to improve ambulance response times

with data analytics. The instinct of an algorithmic formalist, following a universalist orientation, would be to

develop an algorithm that optimizes ambulance dispatch [47, 244, 248, 525]. Yet when the author studied the

context of the problem, it became clear that such a “solution” would not fit into EMS’s operations nor would

it address the underlying issues generating long response times. The author’s analysis revealed that significant

resources were being deployed to 911 calls for people struggling with homelessness, mental illness, and drug

addiction. These individuals did not require the acute medical care that EMS was providing (at the expense of

providing it for other incidents); instead they needed social services that EMS was ill-equipped to provide. It

became clear that ambulance response efficiency was a limited frame for understanding (and thus reforming)

EMS’s operations: the efficiency of ambulance responses said nothing about the broader goal of providing
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services that address people’s needs.

Although a dispatch optimization algorithm may perform well along formalist metrics of efficiency, such an

algorithmwould have failed to address the underlying issue. The author instead worked with EMS to create a new

unit of EMTs who would respond to these incidents via bicycle or car and be specially trained to connect people

to local social services; the parameters of when and where this unit would operate were determined by analyzing

EMS incident data. Notably, the ultimate intervention was not to integrate an algorithm into existing procedures:

a policy change informed by data was better suited to improve both efficiency and service quality. Rather than

representing a failure to take advantage of algorithms, this effort was recognized as a positive collaboration that

integrated data analysis and institutional context to improve social services.

9.6 Discussion

The numerous and significant harms of algorithms may appear to be the result of computer scientists failing to

follow best practices. Yet our articulation of algorithmic formalism describes how these outcomes are due to

the logic of algorithmic thinking itself, not an imperfect or malevolent application thereof. The chronic tunnel

vision of algorithmic formalism can lead to harmful outcomes despite good intentions and following current

best practices. Remedying these failings requires not incorporating new variables or metrics (such as fairness)

into the formal method but instead introducing new epistemic and methodological tools that expand the bounds

of what it means to “do” algorithms.

Algorithmic realism represents this evolution in algorithmic thought, providing new modes of practical rea-

soning about the relationship between algorithms and the social world. The realist orientations described here

provide important starting points for computer scientists and others pursuing algorithmic interventions. Fol-

lowing the political orientation, practitioners should consider what assumptions and values they may be taking

for granted and what normative commitments they want their intervention to embody. Following the porous
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orientation, practitioners should consider what theory of change motivates their work and how to responsibly

account for unexpected impacts. Following the contextual orientation, practitioners should consider what goals

are central to a given context and whether an algorithm actually provides an appropriate intervention. In a realist

mode of reasoning, all of these questions are seen as integral to rigorous algorithmic work rather than as beyond

the scope of algorithmic design. These realist practices will enable the field not just to avoid harmful impacts,

but also to identify new research questions and directions to pursue.

As in law, algorithmic realism is not meant to provide a wholesale rejection of formal methods nor will it

provide a wholesale solution to the intractable challenges of designing just algorithmic systems. Even to the

extent that the turn to algorithmic realism is motivated by a broader program of social reform (à la the turn to

legal realism), new epistemic and methodological tools cannot by themselves achieve a vision of the good, let

alone determine which vision of the good to work towards. Nonetheless, algorithmic realism can help computer

scientists reflexively approach their work in light of their larger normative commitments and the impacts of

algorithmic systems. As such, algorithmic realism enables computer scientists to reason well about doing good.
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Chapter 10

Conclusion

As algorithms become commonplace across a wide range of policy domains, it is necessary to expand the criteria

incorporated into the design and implementation of these systems. A methodology of drawing on legal and

social theory is a necessary step toward achieving more responsible and effective approaches to algorithms and

social change. Looking to fields that have long engaged with the relationship between social interventions and

social impacts can therefore inform new ways of understanding, developing, and governing algorithms.

One area of work will be to explore how algorithmic interventions can be recognized as embodying legal

strategies for social change. This requires reconceptualizing the relationship between algorithms and law: neither

wholly distinct nor wholly interchangeable, the two instead represent related approaches to rule-based decision

making and managing discretion. Although law and technology are typically seen as being in tension, recognizing

the ways in which law and technology resemble similar mechanisms of social ordering suggests the potential for

legal theory and STS to inform one another [252]. Algorithmic interventions often represent a particular form

of what have in the past have been policy reforms. And as with algorithms, the law is subject to critiques that

expose the limits of its supposed objectivity and neutrality.
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A second area of work will be to consider how the analogy between algorithmic and legal interventions can

inform our understanding and governance of algorithms. This will involve characterizing what types of social

impacts algorithmic interventions are capable of generating and how those impacts relate to the design and

governance of algorithms. By analyzing algorithmic interventions through the lens of STS and law, it may be

possible to identify what types of social change these interventions have produced and to evaluate the potential

and limits of such reforms.

Doing so can provide several important insights for studying and governing algorithms. First, it can indicate

when and where algorithms present an appropriate reform strategy. Despite the adoption of algorithms across

a wide range of policy domains, algorithms are more clearly suited toward certain types of problems than others.

Responsible deployment of algorithms requires understanding where algorithms are appropriate and where they

are not. One recent paper suggests four particular roles for algorithms [1]. Second, this analysis can reveal more

systemic issues that are often glossed over by algorithmic interventions. The deployment and impacts of algo-

rithms are often grounded in broader issues (such as austerity and a lack of political will for alternative reforms)

in addition to the technical capacities and affordances of algorithms. Analyzing the delta between contexts in

which algorithms are appropriate and are deployed may therefore highlight where structural issues are being

overlooked or obfuscated. Third, this analysis can inform governance strategies for algorithms. Recognizing al-

gorithms as akin to prior legal forms can point the way toward adapting existing governance models from other

domains to algorithms. For instance, drawing on approaches to limiting legal indeterminacy, the implementation

of algorithms could be tied to “sunset provisions” that condition ongoing use to approval based on the results

of algorithmic impact assessments.

The foundations of these first two areas will enable algorithmic interventions that are better equipped to

improve society. This requires developing a sociotechnical computer science practice that thinks rigorously and

reflexively about the role of algorithmic interventions in producing social change—in other words, that is as

rigorous regarding social context and impacts as it is regarding algorithms themselves.
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One area of work involves developingmethods to improve human-algorithm collaboration in decision-making.

As I have shown in this thesis, there exist significant breakdowns in decision making when predictive models are

presented to humans. Achieving just decisions will require adapting existing theories of just decision making to

the context of algorithm-informed decisions as well as following a sociotechnical research practice that starts with

studying what actually improves human decision making and working backwards from there. For instance, rather

than presenting people with predictive models that duplicate their decisions, it may be better to present people

with algorithmic tools that provide context and feedback. It is also important to consider the many different types

of decisions in which human-algorithm collaborations arise and how the effectiveness of different approaches

may vary across those tasks.

This approach also suggests future research directions with regards to to the methods described in Chapter 7.

First, rather than just identifying high-risk individuals, can we identify nodes or edges in the network where

intervention could have the largest spillover effects? It is not necessarily the case that the highest-risk nodes

are also the places where intervention will have the largest net effects. It could be that it is more effective to

intervene (i.e., provide resources to reduce the likelihood of violence) not on the highest risk individuals, but on

the individuals most likely to “spread” violence through a social network. This requires also attaining a greater

understanding of the spillover effects of different types of interventions [515]. Second, is it possible to alter the

dynamics of contagion over the network? Given dynamics of violence transmission such as those described in

Chapter 7, what would it look like to change these dynamics or change the structure of the network? In other

words, rather than designing interventions at the level of individuals, it could be more effective to design broader,

population-level interventions that reduce the dynamics of transmission or make the network less conducive to

transmission.

Another topic that deserves particular attention is the extent to which algorithms can account for structural

inequality when making decisions. Additional scholarship is necessary to understand the relationship between

accuracy and fairness, and in particular the potential limits and harms of accuracy when operating in settings
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with existing inequities. Drawing on debates about different legal strategies for addressing discrimination will

inform efforts to develop algorithmic interventions that remediate rather than reproduce historical inequities.

Considering the limits of accuracy is also important for evaluating algorithm-in-the-loop systems: accuracy is

not the only value in decision making, so positioning accuracy as the sole or most important criterion may

prevent us from fully capturing the quality of human-algorithm collaborations. An important open question is

how to design experiments that study algorithm-in-the-loop decision making without inappropriately privileging

easily quantifiable outcomes (such as accuracy and efficiency).

Finally, it will be essential to explore methods for developing and evaluating algorithms through democratic

deliberation. The increasing centrality of algorithms in public policy make the development and evaluation of

these algorithms an important site for democratic decision making. Yet there do not yet exist robust models for

how to have effective public deliberations about digital technology; for instance, programs such as open data have

not created the rich civic engagement often aspired to. The rich literature on both theories of democracy and

empirical studies of civic engagement efforts will be an important starting point for enhancing civic participation

and control regarding algorithms. Existing mechanisms for participatory design and decision making—such

as charrettes and participatory budgeting—present promising models for incorporating democratic input into

algorithmic interventions.
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